Skip to main content

Electrolyte Disorders in Pregnancy

  • Chapter
  • First Online:
Obstetric and Gynecologic Nephrology
  • 787 Accesses

Abstract

In pregnancy, central nervous system and hormonal changes lead to altered regulation of salt and water. This chapter discusses the differential diagnosis for hyponatremia and hypernatremia during pregnancy and the management in the pregnant woman.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunton PJ, Arunachalam S, Russel JA. Control of neurohypophysial hormone secretion, blood osmolality and volume in pregnancy. J Physiol Pharmacol. 2008;59(Suppl 8):27–45.

    PubMed  Google Scholar 

  2. Pazhayattil GS, Rastegar A, Brewster UC. Approach to the diagnosis and treatment of hyponatremia in pregnancy. Am J Kidney Dis. 2015;65(4):623–7. https://doi.org/10.1053/j.ajkd.2014.09.027. Epub 2014 Dec 24.

    Article  PubMed  Google Scholar 

  3. Joo KW, et al. Antiduiuretic action of oxytocin is associated with increased urinary excretion of aquaporin-2. Nephrol Dial Transplant. 2004;19:2480–6. https://doi.org/10.1093/ndt/gfh413. Advance Access publication 27 July 2004.

    Article  CAS  PubMed  Google Scholar 

  4. Knight S, Snellen H, Humphreys M, Baylis C. Increased renal phosphodiesterase-5 activity mediates the blunted natriuretic response to ANP in the pregnant rat. Am J Physiol Renal Physiol. 2007;292:F655–9.

    Article  CAS  Google Scholar 

  5. Harris K, Shankar R, Black K, Rochelson B. Reset osmostat in pregnancy: a case report. J Matern Fetal Neonatal Med. 2014;27(5):530–3. https://doi.org/10.3109/14767058.2013.819333. Epub 2013 July 23.

    Article  PubMed  Google Scholar 

  6. Mathot M, Maton P, Henrion E, François-Adant A, Marguglio A, Gaillez S, et al. Pseudo-Bartter syndrome in a pregnant mother and her fetus. Pediatr Nephrol. 2006;21(7):1037–40. Epub 2006 May 30.

    Article  Google Scholar 

  7. Irani M, Fisher N, Mor A, Bensinger G. Urinary retention and syndrome of inappropriate antidiuretic hormone secretion (SIADH) secondary to impacted gravid uterus. J Obstet Gynaecol Res. 2016;42(6):734–7. https://doi.org/10.1111/jog.12963. Epub ahead of print.

    Article  CAS  PubMed  Google Scholar 

  8. Bodenmann PG, et al. Preeclampsia and electrolyte disturbances in a case report. Nephrol Ther. 2014;10(1):51–7.

    Article  Google Scholar 

  9. Sandhu G, Ramaiah S, Chan G, Meisels I. Pathophysiology and management of pre-eclampsia-associated severe hyponatremia. Am J Kidney Dis. 2010;55(3):599–603.

    Article  CAS  Google Scholar 

  10. Sutton RA, Schonholzer K, Kassen BO. Transient syndrome of inappropriate antidiuretic hormone secretion during pregnancy. Am J Kidney Dis. 1993;21:444–5.

    Article  CAS  Google Scholar 

  11. Roberts TJ, Nijland MJM, Williams L, Ross MG. Fetal diuretic responses to maternal hyponatremia; contribution of placental sodium gradient. J Appl Physiol. 1999;87(4):1440–7.

    Article  CAS  Google Scholar 

  12. Chapman T, Hamilton M. Water intoxication presenting as maternal and neonatal seizures: a case report. J Med Case Rep. 2008;2(1):366.

    Article  Google Scholar 

  13. Basu A, Dillon RDS, Taylor R, Davison JM, Marshall SM. Is normalization of serum potassium and magnesium always necessary in Gitelman Syndrome for a successful obstetric outcome? BJOG Int J Obstet Gynecol. 2004;111:630–4.

    Article  CAS  Google Scholar 

  14. Cheung KL, Lafayette RA. Renal physiology of pregnancy. Adv Chronic Kidney Dis. 2013;20(3):209–14.

    Article  Google Scholar 

  15. Gunganah K, Carpenter R, Drake WM. Eplerenone use in primary aldosteronism during pregnancy. Clinical case reports. London: Department of Endocrinology, St. Bartholomew’s Hospital. Accepted 25 July 2015.

    Google Scholar 

  16. Kellerman E. Renal control of electrolytes and acid-base balance during pregnancy. In: Alvarez RR, editor. Kidney in pregnancy, clinical monographs in obstetrics and gynecology. New York: Wiley; 1976. p. 85–96.

    Google Scholar 

  17. Landau E, Amar L. Primary aldosteronism and pregnancy. Ann Endocrinol (Paris). 2016;77(2):148–60.

    Article  Google Scholar 

  18. Kosaka KN, Onada T, Ishikawa N, Iwanaga J, Yamamasu, Tahara H, et al. Laparascopic adrenalectomy on a patient with primary aldosteronism during pregnancy. Endocrinol J. 2006;53:461–6.

    Google Scholar 

  19. Ada ED, et al. Pregnancy, primary aldosteronism, and adrenal CTNNB1 mutations. NEJM. 2015;373:1429–36.

    Article  Google Scholar 

  20. Riester A, Reincke M. Progress in primary aldosteronism review. Mineralocorticoid receptor antagonists and management of primary aldosteronism in pregnancy. Eur J Endocrinol. 2015;172:R23–30. Munich, Germany.

    Article  CAS  Google Scholar 

  21. Srisuttayasathien M. Hypokalemia induced rhabdomyolysis as a result of distal renal tubular acidosis in a pregnant woman: a case report and literature review. Case Rep Obstet Gynecol. 2015:947617. Department of Obstetrics and Gynecology, Chaophraya Yommaraj Hospital, Thailand. 2015. Hindawi Publishing Corporation.

    Google Scholar 

  22. Muthukrishnan J, Harikumar KVS, Ratan J, Kirtikumar M. Pregnancy predisposes to rhabdomyolysis due to hypokalemia. Saudi J Kidney Dis Transpl. 2010;21(6):1127–8. Department of Endocrinology, Medwin Hospital, Hyderabad, India.

    PubMed  Google Scholar 

  23. Kulkarni M, Srividya TV, Gopal N. Hypokalemia paraplegia in pregnancy. J Clin Diagn Res. 2014;8(6):OD03–4.

    PubMed  PubMed Central  Google Scholar 

  24. Santra G, Paul R, Das S, Pradhan S. Hyperventilation of pregnancy presenting with flaccid quadriparesis due to hypokalemia secondary to respiratory alkalosis. J Assoc Physicians India. 2014;62(6):536–8.

    PubMed  Google Scholar 

  25. Caretto A, Primerano L, Novara F, Zuffardi O, Genovese S, Rondinelli M. A therapeutic challenge: Liddle’s syndrome managed with amiloride during pregnancy. Case Rep Obstet Gynecol. 2014;2014:156250. Hindawi Publishing Corporation.

    PubMed  PubMed Central  Google Scholar 

  26. Ribeiro RBF, da Silveira Junior SAD, Silva CCB, Gontijo GR. Gitelman syndrome: from diagnosis to follow-up during pregnancy. Braz J Nephrol. 2015;37(2). Sau Paulo.

    Google Scholar 

  27. Iheonunekwu NC, Ibrahim TM, Davies D, Pickering K. Thyrotoxic hypokalemic paralysis in a pregnant Afro-Caribbean woman. A case report and review of the literature. West Indian Med J. 2004;53(1):47–9.

    CAS  PubMed  Google Scholar 

  28. Myopathy MKD. Hypokalemia and Pica (geophagia) in pregnancy. Ulster Med J. 2006;75(2):159–60.

    Google Scholar 

  29. Dalton LM, Ní Fhloinn DM, Gaydadzhieva GT, Mazurkiewicz OM, Leeson H, Wright CP. Magnesium in pregnancy. Nutr Rev. 2016;74(9):549–57. https://doi.org/10.1093/nutrit/nuw018. Epub 2016 Jul 21. https://www.ncbi.nlm.nih.gov/pubmed/27445320.

    Article  PubMed  Google Scholar 

  30. Beloosesky R, Khatib N, Ginsberg Y, et al. Maternal magnesium sulfate fetal neuroprotective effects to the fetus: inhibition of neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells activation in a rodent model. Am J Obstet Gynecol. 2016;215(3):382.e1–6. https://doi.org/10.1016/j.ajog.2016.03.032. Epub 2016 Mar 24. https://www.ncbi.nlm.nih.gov/pubmed/27018467.

    Article  CAS  Google Scholar 

  31. Crowther CA, Hiller JE, Doyle LW, Haslam RR, Australasian Collaborative Trial of Magnesium Sulfate Collaborative Group. Effect of magnesium sulfate given for neuroprotection before preterm birth: a randomized control trial. JAMA. 2003;290:2669–76.

    Article  CAS  Google Scholar 

  32. Marret S, Marpeau L, Zupan-Simunek V, PREMAG Trial Group, et al. Magnesium sulfate given before very preterm birth to protect infant brain: the randomized controlled PREMAG trial. BJOG. 2007;114:310–8.

    Article  CAS  Google Scholar 

  33. Rouse DJ, Hirtz DG, Thorn E, et al. A randomized controlled trial of magnesium sulfate for the prevention of cerebral palsy. NEJM. 2009;359:895–905.

    Article  Google Scholar 

  34. Abad C, Vargas FR, Zoltan T, Proverbio T, Piñero S, Proverbio F, Marín R. Magnesium sulfate affords protection against oxidative damage during severe preeclampsia. Placenta. 2015;36(2):179–85. https://doi.org/10.1016/j.placenta.2014.11.008. Epub 2014 Nov 25. https://www.ncbi.nlm.nih.gov/pubmed/25486968.

    Article  CAS  PubMed  Google Scholar 

  35. Jafrin W, Mia AR, Chakraborty PK, Hoque MR, Paul UK, Shaha KR, Akhter S, Roy AS. An evaluation of serum magnesium status in pre-eclampsia compared to the normal pregnancy. Mymensingh Med J. 2014;23(4):649–53. https://www.ncbi.nlm.nih.gov/pubmed/25481580.

    CAS  PubMed  Google Scholar 

  36. de Sousa Rocha V, Della Rosa FB, Ruano R, Zugaib M, Colli C. Association between magnesium status, oxidative stress and inflammation in preeclampsia: a case-control study. Clin Nutr. 2015;34(6):1166–71. https://doi.org/10.1016/j.clnu.2014.12.001. Epub 2014 Dec 5. https://www.ncbi.nlm.nih.gov/pubmed/25559945.

    Article  CAS  PubMed  Google Scholar 

  37. Udenze IC, Arikawe AP, Azinge EC, Okusanya BO, Ebuehi OA. Calcium and magnesium metabolism in pre-eclampsia. West Afr J Med. 2014;33(3):178–82. https://www.ncbi.nlm.nih.gov/pubmed/26070821.

    CAS  PubMed  Google Scholar 

  38. Touyz RM. Role of magnesium in the pathogenesis of hypertension. Mol Asp Med. 2003;24:107–36.

    Article  CAS  Google Scholar 

  39. Spinnato JA, Livingston JC. Prevention of preeclampsia with antioxidants: evidence from randomized trials. Clin Obstet Gynecol. 2005;48:416–29.

    Article  Google Scholar 

  40. Chen Q, Zhao M, Guo F, Yin YX, Xiao JP, Stone PR, Chamley LW. The reduction of circulating levels of IL-6 in pregnant women with preeclampsia by magnesium sulfate and nifedipine: in vitro evidence for potential mechanisms. Placenta. 2015;36(6):661–6. https://doi.org/10.1016/j.placenta.2015.03.009. Epub 2015 Apr 9.

    Article  CAS  PubMed  Google Scholar 

  41. Das M, Chaudhuri PR, Mondal BC, Mitra S, Bandyopadhyay D, Pramanik S. Assessment of serum magnesium levels and its outcome in neonates of eclamptic mothers treated with low-dose magnesium sulfate regimen. Indian J Pharmacol. 2015;47(5):502–8. https://doi.org/10.4103/0253-7613.165183. https://www.ncbi.nlm.nih.gov/pubmed/26600638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Barta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barta, V., Koncicki, H. (2020). Electrolyte Disorders in Pregnancy. In: Sachdeva, M., Miller, I. (eds) Obstetric and Gynecologic Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-25324-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25324-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25323-3

  • Online ISBN: 978-3-030-25324-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics