Skip to main content

Propagation of Laser Beams in Linear Media

The Gaussian, Bessel, and Bessel-Gauss Approaches

  • Chapter
  • First Online:
Physical Optics

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 2084 Accesses

Abstract

If the medium is homogeneous, linear, isotropic, and non-dispersive, any electromagnetic wave can, in principle, be decomposed into plane waves, which are a simple and effective basis for complex wave equation solutions (1.4.12). But, in real cases, we have to deal with electromagnetic beams of limited size, and the decomposition in plane waves is not always the most appropriate. Consider, for example, the case of a monochromatic, and therefore continuous (CW, that is, continuous wave, single-frequency) laser beam; at every point in the space, its electric field oscillates sinusoidally over time. The spatial trend in this field is not equally simple: at first sight, a collimated laser beam is a genuinely good representation of a pencil of parallel geometric rays between them, but, with more careful observation, we find that the beam tends to expand due to the diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical references

  • Abramowitz M. and Stegun I.A., Handbook of Mathematical Functions, Dover Publications Inc., New York (1972).

    Google Scholar 

  • Allen L. M., Beijersbergen W., Spreeuw R.J.C., and Woerdman J.P., Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev A 45, 8185-8189 (1992).

    Article  ADS  Google Scholar 

  • Anan’ev Y.A., Laser resonator and the beam resonance problem, Hadam Hilger, Bristol, IOP publishing Ltd (1992).

    Google Scholar 

  • Arlt J. and Dholakia K., Generation of high-order Bessel beam by use of an axicon, Opt. Comm. 177, 297-301 (2000).

    Article  ADS  Google Scholar 

  • Arnaud J.A., Nonorthogonal Optical Waveguides and Resonators, The Bell System Technical Journal 49, 2311-2348 (November 1970).

    Article  MathSciNet  Google Scholar 

  • Arnaud J.A. and Kogelnik H., Gaussian Light Beams with General Astigmatism, Appl. Optics 8, 1687-1693 (1969).

    Article  ADS  Google Scholar 

  • Bagini V., Frezza F., Santarsiero M., Schettini G., and Schirripa Spagnolo G., Generalized Bessel-Gauss Beams, J. of Mod. Optics 43, 1155-1166 (1996).

    ADS  MathSciNet  MATH  Google Scholar 

  • Boyd G.D. and Gordon J.P., Confocal Multimode Resonator for Millimeter Through Optical Wavelength Masers, Bell. Syst. Tech. J. 40, 489-508 (1961).

    Article  Google Scholar 

  • Boyd G.D. and Kogelnik H., Generalized Confocal Resonator Theory, Bell. Syst. Tech. J. 41, 1347-1369 (1962).

    Article  Google Scholar 

  • Bradley D.J. and Mitchell C.J., Characteristics of the defocused spherical Fabry-Perot interferometer as a quasi-linear dispersion instrument for high resolution spectroscopy of pulsed laser sources, Phil. Trans. R. Soc. A 263, 209-223 (1968).

    Google Scholar 

  • Collins Stuart A. Jr., Analysis of Optical Resonators Involving Focusing Elements, Appl. Opt. 3, 1263-1275 (1964). Lens-System Diffraction Integral Written in Terms of Matrix Optics, J. Opt. Soc. Am. 60, 1168-1177 (1970).

    Google Scholar 

  • Collins R.J., Nelson D.F., Schawlow A.L., Bond W., Garrett C.G.B., and Kaiser W., Coherence, Narrowing, Directionality, and Relaxation Oscillations in the Light Emission from Ruby, Phys. Rev. Lett. 5, 303-305 (1960).

    Article  ADS  Google Scholar 

  • Connes P., Augmentation du produit luminosité × résolution des interféromètres par l’emploi d’une différence de marche indépendante de l’incidence, Revue Opt. 35, 37- 43 (1956). L’étalon Fabry-Perot sphérique, J. Phys. Radium 19, 262-269 (1958).

    Google Scholar 

  • Dingjan J., Multi-mode optical resonators and wave chaos, Thesis, Leiden University (2003), accessibile da http://iop.hqu.edu.cn/uploadfile/20111229162543941.pdf.

    Google Scholar 

  • Durnin J., Exact solution for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A 4, 651-654 (1987).

    Article  ADS  Google Scholar 

  • Durnin J., Miceli J.J. Jr, and Eberly J.H., Diffraction-Free Beams, Phys. Rev. Lett. 58, 1499-1451 (1987).

    Google Scholar 

  • Fox A.G. and Li T., Resonant Modes in a Maser Interferometer, Bell. Syst. Tech. J. 40, 453-488 (1961).

    Article  Google Scholar 

  • Gori F., Guattari G. and Padovani C., Bessel-Gauss Beams, Opt. Comm. 64, 491-495 (1987).

    Article  ADS  Google Scholar 

  • Guenther R., Modern Optics, John Wiley & Sons, New York (1990).

    Google Scholar 

  • Herriott D., Kogelnik H., and Kompfner R., Off-axis paths in spherical mirror interferometers, Applied Optics 3, 523-526 (1964).

    Article  ADS  Google Scholar 

  • Iizuka K., Engineering Optics, Springer-Verlag, Berlino (1987).

    Google Scholar 

  • Kogelnik H., On the Propagation of Gaussian Beams of Light Through Lenslike Media Including those with a Loss or Gain Variation, Appl. Optics 4, 1562-1569 (1965a). Imaging of Optical Modes - Resonators with Internal Lenses, Bell. Syst. Tech. J. 44, 455-494 (1965b).

    Google Scholar 

  • Kogelnik H. and Li T., Laser Beams and Resonators, Appl. Opt. 5, 1550-1567 (1966a). Proc. IEEE 54, 1312-1320 (1966b).

    Google Scholar 

  • Maiman T.H., Stimulated optical radiation in ruby, Nature 187, 493-494 (1960a). Optical and microwave-optical experiments in ruby, Phys. Rev. Lett. 4, 564-566 (1960b).

    Google Scholar 

  • McLeod J.H., The axicon: a new type of optical element, J. Opt. Soc. Am. 44, 592-597 (1953).

    Google Scholar 

  • Piccirillo B., Slussarenko S., Marrucci L., and Santamato E., The orbital angular momentum of light: genesis and evolution of the concept and of the associated photonic technology. Rivista del Nuovo Cimento 36, 501-554 (2013).

    Google Scholar 

  • Popov M.M., Resonators for lasers with unfolded directions of principal curvatures, Opt. Spectrosc. 25, 231-217 (1968); Resonators for lasers with rotated directions of principal curvatures, Opt. Spectrosc. 25, 170-171 (1968).

    Google Scholar 

  • Prokhorov A.M., Molecular amplifier and generator for submillimeter waves, Sov. Phys. JETP 7, 1140-1141 (1958).

    Google Scholar 

  • Santarsiero M., Propagation of generalized Bessel-Gauss beams through ABCD optical Systems, Opt. Comm. 132, 1-7 (1996).

    Google Scholar 

  • Schawlow A.L. and Townes C.H., Infrared and optical maser, Phys. Rev. 112, 1940-1949 (1958).

    Article  ADS  Google Scholar 

  • Scott G. and McArdle N., Efficient generation of nearly diffraction-free beams using an axicon, Opt. Engineering 31, 2640-2643 (1992).

    Google Scholar 

  • Siegman A.E., Unstable optical resonator for laser application, Proc. IEEE 53, 277-287 (1965). Lasers, University Science Books, Mill Valley, California (1986).

    Google Scholar 

  • Solimeno S., Crosignani B., Di Porto P., Guiding, Diffraction, and Confinement of Optical Radiation, Academic Press, inc., Orlando (1986).

    Google Scholar 

  • Suematsu Y. and Fukinuki H., Matrix theory of light beam waveguides, Bull. Tokyo Inst. Technol. 88, 33-47 (1968).

    Google Scholar 

  • Vasara A., Turunen J., and Friberg A.T., Realization of general nondiffracting beams with computer-generated holograms, J. Opt. Soc. Am. A 6, 1748-1754 (1989).

    Article  ADS  Google Scholar 

  • Vaughan J.M., The Fabry-Perot Interferometer, A. Hilger, Bristol (1989).

    Google Scholar 

  • Weinstein L.A., Otkrytyye Rezonatory i otkrytyye volnovody (Moskow: Sovetskoye Radio, 1966); Open resonators and open waveguide, Golem Press (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Giusfredi .

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giusfredi, G. (2019). Propagation of Laser Beams in Linear Media. In: Physical Optics. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-25279-3_6

Download citation

Publish with us

Policies and ethics