Current Sensing Techniques: Principles and Readouts

  • Mahdi KashmiriEmail author


Current sensing is an essential part of a wide range of applications from low-power handheld consumer products to high-power electro-mobility drivetrains. The state of charge in a battery and its load monitoring, the control of an electromotor, a power converter, or a biosensor, all have specific demands when it comes to dynamic range, precision, speed, isolation, size, and cost. This chapter provides an overview of the applications and principles of operation for the two main current sensing approaches: contacted (shunt-based) and contactless or isolated (magnetic or coil based).


Current-sensing Magnetic sensor Contactless Shunt-based Fluxgate 


Introduction and Applications

  1. 1.
    P. Semig, C. Wells, Texas Instruments, A current sensing tutorial, parts 1 to 4. (EE Times, 2012)Google Scholar
  2. 2.
    S. Ziegler et al., Current sensing techniques: a review. IEEE Sensors J. 9(4), 354–376 (2009)CrossRefGoogle Scholar
  3. 3.
    Maxim Integrated, Practical considerations for advanced current sensing in high-reliability systems, Application note 3883. (Sept 2006)Google Scholar
  4. 4.
    T. Regan et al., Current sense circuit collection, Application note 105. (Linear Technology (ADI), Dec 2005)Google Scholar
  5. 5.
    J. Douglass, Linear Technology (ADI), Battery management architectures for hybrid/electric vehicles. (Mar 2009)Google Scholar
  6. 6.
    LTC6802-1 multicell battery stack monitor, datasheet. (Linear Technology (ADI))Google Scholar
  7. 7.
    Automotive current sensing. Eur. J. Power. Electron. (3) (Apr 2008)Google Scholar
  8. 8.
    V. Yang, Peak current mode and continuous current mode DC-to-DC converter modeling and loop compensation design considerations, Technical article. (Analog Devices (ADI))Google Scholar
  9. 9.
    H.J. Zhang, Modeling and loop compensation design of switching mode power supplies, Application note 149. (Linear Technology (ADI), Jan 2015)Google Scholar
  10. 10.
    A.M. Patel et al., Advanced current sensing techniques for power electronic converters, in IEEE Vehicle Power and Propulsion Conference (Sept 2007)Google Scholar
  11. 11.
    H.P. Forghani-zadeh et al., Current-sensing techniques for DC-DC converters, in IEEE MWSCAS (Aug 2002)Google Scholar
  12. 12.
    B. Lynch, Feedback in the fast lane – modeling current-mode control in high-frequency converters, Application paper. (Texas Instruments), Available onlineGoogle Scholar
  13. 13.
    M. Cortez, U. Sengupta, Introduction to battery management, in Battery Charging – Texas Instruments Training,
  14. 14.
    J. Lepkowski, Motor control sensor feedback circuits, Application note AN894. (Microchip, 2003)Google Scholar
  15. 15.
    W. Slowik et al., Selected current sensing circuits for motor control applications. Pomiary Automat. Robot. 21(1), 5–12 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Bridgmon, C. Andrews, Current sensing for inline motor-control applications, Application report SBOA172. (Texas Instruments, Oct 2016)Google Scholar

Contacted (Shunt-Based) Current Sensing

  1. 17.
    Texas Instruments, Application note SLYB194d, Current sense amplifiers. (2018), Available onlineGoogle Scholar
  2. 18.
    W. Kindt, Current sense amplifiers with extended common mode voltage range, in Analog Circuit Design, ed. by M. Steyaert, A. H. Roermund, H. Casier, (Springer, Dordrecht, 2009)Google Scholar
  3. 19.
    Texas Instruments, Reference design, Automotive shunt-based ±500A precision current sensing reference design. (Feb 2017)Google Scholar
  4. 20.
    Maxim Integrated, Tutorial 746, High-side current-sense measurement: circuits and principles. (Nov 2001)Google Scholar
  5. 21.
    N. Aupetit, ST Microelectronics, Application Note AN4835, High-side current sensing for applications using high common-mode voltage. (Nov 2016)Google Scholar
  6. 22.
    Vishay Intertechnology Inc., Shunts, current shunts, and current-sensing resistors, An overview of resistor shunt products for current sensing. (2018)Google Scholar
  7. 23.
    L. Spaziani, Using copper PCB Etch for low value resistance, Unitrode (Texas Instruments) design note, DN71. (2001)Google Scholar
  8. 24.
    F. Witte et al., A current-feedback instrumentation amplifier with 5 μV offset for bidirectional high-side current-sensing. IEEE J. Solid State Circuits 43(12), 2769–2775Google Scholar
  9. 25.
    F. Rothan et al., A ±1.5% nonlinearity 0.1-to-100A shunt current sensor based on a 6kV isolated micro-transformer for electrical vehicles and home automation, in IEEE ISSCC (IEEE, 2011), pp. 112–114Google Scholar
  10. 26.
    Z. Tan et al., A fully isolated delta-sigma ADC for shunt based current sensing. IEEE J. Solid State Circuits 51(10), 2232–2240 (2016)CrossRefGoogle Scholar
  11. 27.
    Q. Fan et al., Capacitively-Coupled Chopper Amplifiers (Springer, Cham, 2017)CrossRefGoogle Scholar
  12. 28.
    Q. Fan et al., A capacitively coupled chopper instrumentation amplifier with a ±30V common-mode range, 160dB CMRR and 5μV offset, in IEEE ISSCC (IEEE, 2012), pp. 374–376Google Scholar
  13. 29.
    S.H. Shalmany et al., A ±5 A integrated current-sensing system with ±0.3% gain error and 16 μA offset from −55 °C to +85 °C. IEEE J. Solid State Circuits 51(4), 800–808 (2016)CrossRefGoogle Scholar
  14. 30.
    S.H. Shalmany et al., A ±36-A integrated current-sensing system with a 0.3% gain error and a 400-μA offset from −55 °C to +85°C. IEEE J. Solid State Circuits 52(4), 1034–1043 (2017)CrossRefGoogle Scholar
  15. 31.
    L. Xu et al., A ±4A high-side current sensor with 25V input CM range and 0.9% gain error from −40°C to 85°C using an analog temperature compensation technique, in IEEE ISSCC 2018 (IEEE, 2018), pp. 324–326Google Scholar

Contactless Current Sensing

  1. 32.
    D.P. Pappas, High Sensitivity Magnetic Field Sensor Technology Overview (National Institute of Standards and Technology, NIST, Boulder).

Hall Effect Sensors

  1. 33.
    Infineon, Application note, Current sensing using linear hall sensors. (Feb 2009)Google Scholar
  2. 34.
    J. van der Meer et al., A fully integrated CMOS Hall sensor with a 3.65μT 3σ offset for compass applications, in IEEE ISSCC 2005 (IEEE, 2005), pp. 246–247Google Scholar
  3. 35.
    C. Schott et al., CMOS single-chip electronic compass with microcontroller. IEEE J. Solid State Circuits 42(12), 2923–2933 (2007)CrossRefGoogle Scholar
  4. 36.
    M. Motz, A miniature digital current sensor with differential Hall probes using enhanced chopping techniques and mechanical stress compensation, in IEEE Sensors, 2012 (IEEE, 2012), pp. 1–4Google Scholar
  5. 37.
    P.D. Dimitropoulos et al., A 0.35um-CMOS, wide-band, low-noise HALL magnetometer for current sensing applications, in IEEE Sensors 2007 (IEEE, 2007), pp. 884–887Google Scholar
  6. 38.
    V. Mosser et al., A spinning current circuit for Hall measurements down to the nanotesla range. IEEE Trans. Instrum. Meas. 66(4), 637–650 (2017)CrossRefGoogle Scholar
  7. 39.
    S. Gambini et al., A 10 kPixel CMOS Hall sensor array with baseline suppression and parallel readout for immunoassays. IEEE J. Solid State Circuits 48(1), 302–317 (2013)CrossRefGoogle Scholar
  8. 40.
    H. Heidari et al., A CMOS current-mode magnetic Hall sensor with integrated front-end. IEEE Trans. Circuits Syst. I Regul. Pap. 62(5), 1270–1278 (2015)MathSciNetCrossRefGoogle Scholar
  9. 41.
    J. Jiang et al., A continuous-time ripple reduction technique for spinning-current Hall sensors. IEEE J. Solid State Circuits 49(7), 1525–1534 (2014)CrossRefGoogle Scholar
  10. 42.
    J. Jiang et al., Multipath wide-bandwidth CMOS magnetic sensors. IEEE J. Solid State Circuits 52(1), 198–209CrossRefGoogle Scholar
  11. 43.
    J. Jiang et al., A hybrid multi-path CMOS magnetic sensor with 76 ppm/°C sensitivity drift and discrete-time ripple reduction loops. IEEE J. Solid State Circuits 52(7), 1876–1884 (2017)CrossRefGoogle Scholar

Fluxgate Sensors

  1. 44.
    C. Maier et al., 2D magnetic micro fluxgate system with digital signal output, in IEEE ISSCC 1999 (IEEE, 1999), pp. 130–131Google Scholar
  2. 45.
    A. Baschirotto et al., A CMOS 2D micro-fluxgate earth magnetic field sensor with digital output, in IEEE ISSCC 2007 (IEEE, 2007), pp. 390–391Google Scholar
  3. 46.
    W. Magnes et al., A 92dB-DR 13mW ΔΣ modulator for spaceborn fluxgate sensors, in IEEE ISSCC 2007 (IEEE, 2007), pp. 388–389Google Scholar
  4. 47.
    F. Gayral et al., A 100Hz 5nT/√Hz low-pass ΔΣ servo-controlled microfluxgate magnetometer using pulsed excitation, in IEEE ISSCC 2007 (IEEE, 2007), pp. 384–385Google Scholar
  5. 48.
    M. Kashmiri et al., A 200kS/s 13.5b integrated-fluxgate differential-magnetic-to-digital converter with an oversampling compensation loop for contactless current sensing, in IEEE ISSCC 2015 (IEEE, 2015), pp. 490–491Google Scholar
  6. 49.
    M.F. Snoeij et al., Integrated fluxgate magnetometer for use in isolated current sensing. IEEE J. Solid State Circuits 51(7), 1684–1694 (2016)CrossRefGoogle Scholar
  7. 50.
    Texas Instruments Inc., DRV401 and DRV411 data sheets. (Sept 2014),

Magnetoresistive Sensors

  1. 51.
    Sensitec, Magnetoresistive current sensors, CFS1000 and CMS2000 datasheets, Available onlineGoogle Scholar
  2. 52.
    Allegro, ACS70331 datasheet, High sensitivity, 1 MHz, GMR-based current sensor IC. (May 2018), Available onlineGoogle Scholar
  3. 53.
    Y. Ouyang et al., A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications. Sensors 12(11), 15520–15541 (2012)CrossRefGoogle Scholar
  4. 54.
    A. Nebeling, W. Schreiber-Prillwitz, Architecture of an integrated AMR current sensor (IACS) system for a wide range of automotive applications, in Advanced Microsystems for Automotive Applications 2011. VDI-Buch, ed. by G. Meyer, J. Valldorf, (Springer, Berlin, 2011)Google Scholar
  5. 55.
    A. Bernieri et al., An AMR-based three-phase current sensor for smart grid applications. IEEE Sensors J. 17(23), 7704–7712 (2017)CrossRefGoogle Scholar
  6. 56.
    R.P. Singh et al., Giant magneto resistive (GMR) effect based current sensing technique for low voltage/high current voltage regulator modules. IEEE Trans. Power Electron. 23(2), 915–925 (2008)CrossRefGoogle Scholar
  7. 57.
    S.J. Nibir et al., Wideband contactless current sensing using hybrid magnetoresistor-rogowski sensor in high frequency power electronic converters, in IEEE Applied Power Electronics Conference (IEEE, 2018), pp. 904–908Google Scholar
  8. 58.
    TMR2705, American electronic components, datasheet,
  9. 59.
    E.G. Vidal et al., Electronic energy meter based on a tunnel magnetoresistive effect (TMR) current sensor. Materials (Basel) 10(10), 1134 (2017)CrossRefGoogle Scholar
  10. 60.
  11. 61.
    T. Funk, B. Wicht, A fully integrated DC to 75MHz current sensing circuit with on-chip rogowski coil, in IEEE CICC 2018 (IEEE, 2018), pp. 1–4Google Scholar
  12. 62.
    Si85xx, Unidirectional AC Current Sensors. (SiLabs, 2012), datasheet available onlineGoogle Scholar
  13. 63.
    D.E. Shepard, D.W. Yauch, LEM DynAmp Inc., An overview of rogowski coil current sensing technology, Available onlineGoogle Scholar

Emerging Current Sensing Applications Biomedical

  1. 64.
    C.L. Hsu, D.A. Hall, A current-measurement front-end with 160dB dynamic range and 7ppm INL, in IEEE ISSCC 2018 (IEEE, 2018), pp. 326–328Google Scholar
  2. 65.
    S. Dai et al., A 155-dB dynamic range current measurement front end for electrochemical biosensing. IEEE Trans. Biomed. Circuits Syst. 10(5), 935–944 (2016)CrossRefGoogle Scholar
  3. 66.
    J. Li et al., Solid-state nanopore-based DNA single molecule detection and sequencing. Microchim. Acta 183(3), 941–953 (2016)CrossRefGoogle Scholar


  1. 67.
    Y. Woo et al., Load-independent control of switching DC-DC converters with freewheeling current feedback. IEEE J. Solid State Circuits 43(12), 2798–2808 (2008)CrossRefGoogle Scholar
  2. 68.
    Texas Instruments, Design note: TIDA-01455, Current sense reference design for high-switching transient three-phase inverter for servo drives. (Sept 2017), Available onlineGoogle Scholar
  3. 69.
    X. Ke et al., A 10MHz 3-to-40V VIN tri-slope gate driving GaN DC-DC converter with 40.5dBμV spurious noise compression and 79.3% ringing suppression for automotive applications, in IEEE ISSCC 2017 (IEEE, 2017), pp. 430–431Google Scholar

TFT Display/Laser Drive

  1. 70.
    B. You et al., Real-time current-sensing feedback system for compensating process–voltage–temperature variations of display using double-gate oxide TFT. Electron. Lett. 53(2), 117–119 (2017)CrossRefGoogle Scholar
  2. 71.
    Whitepaper, iCHaus, Design and test of fast laser driver circuits,

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Robert Bosch Research and Technology CenterSunnyvaleUSA

Personalised recommendations