Advertisement

Noise-Shaping SAR ADCs

  • Shaolan Li
  • Jiaxin Liu
  • Wenjuan Guo
  • Nan SunEmail author
Chapter

Abstract

The noise-shaping successive approximation register (NS-SAR) ADC is an emerging hybrid architecture that achieves high resolution and power efficiency simultaneously by combining the merits of the SAR ADC and the Δ Σ ADC. They have the merits of simple, highly digital, and low-voltage tolerant, making them attractive candidates for emerging sensing and communication systems. This paper aims to provide a summary on the advancement of NS-SAR ADCs. The scope of this paper includes the basics and motivations behind the NS-SAR ADCs, followed by a survey covering existing design variations and circuit techniques.

Keywords

Successive-approximation-register (SAR) ADC Δ Σ ADC Noise shaping Error feedback Mismatch error shaping 

References

  1. 1.
    C.G. Bell, R. Chen, S. Rege, Effect of technology on near term computer structures. Computer 5(2), 29–38 (1972)CrossRefGoogle Scholar
  2. 2.
    P. Harpe, E. Cantatore, A. van Roermund, An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, Piscataway, 2014), pp. 194–195Google Scholar
  3. 3.
    L. Chen, X. Tang, A. Sanyal, Y. Yoon, J. Cong, N. Sun, A 0.7-V 0.6- μW 100-kS/s low-power SAR ADC with statistical estimation-based noise reduction. IEEE J. Solid-State Circuits 52(5), 1388–1398 (2017)CrossRefGoogle Scholar
  4. 4.
    C.C. Lee, M.P. Flynn, A SAR-assisted two-stage pipeline ADC. IEEE J. Solid-State Circuits 46(4), 859–869 (2011)CrossRefGoogle Scholar
  5. 5.
    H.Y. Lee, B. Lee, U.K. Moon, A 31.3fJ/conversion-step 70.4dB SNDR 30MS/s 1.2V two-step pipelined ADC in 0.13μm CMOS, in 2012 IEEE International Solid-State Circuits Conference (IEEE, Piscataway, 2012), pp. 474–476Google Scholar
  6. 6.
    B. Verbruggen, M. Iriguchi, J. Craninckx, A 1.7 mW 11b 250 MS/s 2-times interleaved fully dynamic pipelined SAR ADC in 40 nm digital CMOS. IEEE J. Solid-State Circuits 47(12), 2880–2887 (2012)CrossRefGoogle Scholar
  7. 7.
    F. van der Goes et al., A 1.5 mW 68 dB SNDR 80 Ms/s 2× interleaved pipelined SAR ADC in 28 nm CMOS. IEEE J. Solid-State Circuits 49(12), 2835–2845 (2014)Google Scholar
  8. 8.
    Y. Lim, M.P. Flynn, A 1 mW 71.5 dB SNDR 50 MS/s 13 bit fully differential ring amplifier based SAR-assisted pipeline ADC. IEEE J. Solid-State Circuits 50(12), 2901–2911 (2015)CrossRefGoogle Scholar
  9. 9.
    B. Murmann, ADC performance survey 1997–2018, http://web.stanford.edu/murmann/adcsurvey.html Google Scholar
  10. 10.
    J.A. Fredenburg, M.P. Flynn, A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC. IEEE J. Solid-State Circuits 47(12), 2898–2904 (2012)CrossRefGoogle Scholar
  11. 11.
    Y.S. Shu, L.T. Kuo, T.Y. Lo, An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS. IEEE J. Solid-State Circuits 51(12), 2928–2940 (2016)CrossRefGoogle Scholar
  12. 12.
    K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto, K. Sushihara, A 97.99 dB SNDR, 2 kHz BW, 37.1 μW noise-shaping SAR ADC with dynamic element matching and modulation dither effect, in 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits) (IEEE, Piscataway, 2016), pp. 1–2Google Scholar
  13. 13.
    W. Guo, N. Sun, A 12b-ENOB 61μW noise-shaping SAR ADC with a passive integrator, in Proceedings of 42nd European Solid-State Circuits Conference (ESSCIRC) (IEEE, Piscataway, 2016), pp. 405–408Google Scholar
  14. 14.
    W. Guo, H. Zhuang, N. Sun, A 13b-ENOB 173dB-FoM 2nd-order NS SAR ADC with passive integrators, in Proceedings of IEEE Symposium VLSI Circuits (IEEE, Piscataway, 2017), pp. C236–C237Google Scholar
  15. 15.
    H. Zhuang, W. Guo, J. Liu, H. Tang, Z. Zhu, L. Chen, N. Sun, A second-order noise-shaping SAR ADC with passive integrator and tri-level voting. IEEE J. Solid-State Circuits 54(6), 1636–1647 (2019)CrossRefGoogle Scholar
  16. 16.
    Y.Z. Lin, C.H. Tsai, S.C. Tsou, R.X. Chu, C.H. Lu, A 2.4-mW 25-MHz BW 300-MS/s passive noise shaping SAR ADC with noise quantizer technique in 14-nm CMOS, in Proceedings of IEEE Symposium on VLSI Circuits (IEEE, Piscataway, 2017), pp. C234–C235Google Scholar
  17. 17.
    J. Liu, S. Li, W. Guo, G. Wen, N. Sun, A 0.029MM2 17-FJ/Conv.-Step CT Δ Σ ADC with 2nd-order noise-shaping SAR quantizer, in IEEE Symposium on VLSI (IEEE, Piscataway, 2018), pp. 201–202Google Scholar
  18. 18.
    J. Liu, S. Li, W. Guo, G. Wen, N. Sun, A 0.029-mm2 17-fJ/conversion-step third-order CT Δ Σ ADC with a single OTA and second-order noise-shaping SAR quantizer. IEEE J. Solid-State Circuits 54(2), 428–440 (2019)Google Scholar
  19. 19.
    C.C. Liu, M.C. Huang, 28.1 A 0.46mW 5MHz-BW 79.7dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter, in IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers (IEEE, Piscataway, 2017), pp. 466–467Google Scholar
  20. 20.
    M. Miyahara, A. Matsuzawa, An 84 dB dynamic range 62.5–625 kHz bandwidth clock-scalable noise-shaping SAR ADC with open-loop integrator using dynamic amplifier, in Proceedings of IEEE Custom Integrated Circuits Conference (CICC) (IEEE, Piscataway, 2017), pp. 1–4Google Scholar
  21. 21.
    S. Pavan, R. Schreier, G.C. Temes, Understanding Delta-Sigma Data Converters, 2nd edn. (IEEE Press, Piscataway, 2017)Google Scholar
  22. 22.
    K. Lee, M.R. Miller, G.C. Temes, An 8.1 mW, 82 dB delta-sigma ADC with 1.9 MHz BW and −98 dB THD. IEEE J. Solid-State Circuits 44(8), 2202–2211 (2009)CrossRefGoogle Scholar
  23. 23.
    Z. Chen, M. Miyahara, A. Matsuzawa, A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC, in Proceedings of IEEE Symposium on VLSI Circuits (2015), pp. C64–C65Google Scholar
  24. 24.
    S. Li, B. Qiao, M. Gandara, N. Sun, A 13-ENOB 2nd-order noise-shaping SAR ADC realizing optimized NTF zeros using an error-feedback structure, in IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers (IEEE, Piscataway, 2018), pp. 234–236Google Scholar
  25. 25.
    S. Li, B. Qiao, M. Gandara, D.Z. Pan, N. Sun, A 13-ENOB second-order noise-shaping SAR ADC realizing optimized NTF zeros using the error-feedback structure. IEEE J. Solid-State Circuits 53(12), 3484–3496 (2018)CrossRefGoogle Scholar
  26. 26.
    Z. Chen, M. Miyahara, A. Matsuzawa, A stability-improved single-opamp third-order Δ Σ modulator by using a fully-passive noise-shaping SAR ADC and passive adder, in European Solid-State Circuits Conference (IEEE, Piscataway, 2016), pp. 249–252Google Scholar
  27. 27.
    Y. Song, Y. Zhu, C. Chan, L. Geng, R.P. Martins, A 77dB SNDR 12.5MHz bandwidth 0–1 MASH Σ Δ ADC based on the pipelined-SAR structure, in IEEE Symposium on VLSI (IEEE, Piscataway, 2018), pp. 201–202Google Scholar
  28. 28.
    R.J.V.D. Plassche, Dynamic element matching for high-accuracy monolithic D/A converters. IEEE J. Solid-State Circuits 11(6), 795–800 (1976)CrossRefGoogle Scholar
  29. 29.
    B.H. Leung, S. Sutarja, Multibit Σ − Δ A/D converter incorporating a novel class of dynamic element matching techniques. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 39(1), 35–51 (1992)CrossRefGoogle Scholar
  30. 30.
    J. Liu, G. Wen, N. Sun, Second-order DAC MES for SAR ADCs. Electron. Lett. 53(24), 1570–1572 (2017)CrossRefGoogle Scholar
  31. 31.
    J. Liu, C. Hsu, X. Tang, S. Li, G. Wen, N. Sun, Error-feedback mismatch error shaping for high-resolution data converters, in IEEE Transactions on Circuits and Systems I: Regular Papers (IEEE, Piscataway, 2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.The University of Texas at AustinAustinUSA

Personalised recommendations