Robustness, Reliability and Diagnostic Aspects in Sensors for Automotive Applications: The Magnetic Sensors Case

  • A. LavilleEmail author
  • M. Pardoen
  • G. Close
  • M. Poezart
  • D. Gerna


Position sensors are, in volume, the most prevalent sensor in cars. Fully integrated Hall CMOS sensors dominate the automotive position sensor market (magnetic sensor market on 7% CAGR, Online. Accessed Dec 2017). They face challenging operating conditions including wide temperature range (−40 °C to +160 °C) and electromagnetic compatibility (EMC). Design techniques combining Hall elements (HEs), low- and high-voltage transistors are presented to address the sensor accuracy while meeting EMC performance with latest automotive standards. The sensor is implemented in a 0.18 um XFAB HV CMOS technology.


Hall sensors Magnetic sensors Automotive EMC High voltage CMOS technologies 


  1. 1.
    W. Granig, S. Hartmann, B. Köppl, Performance and technology comparison of GMR versus commonly used angle sensor principles for automotive applications, in SAE Technical Paper Series, volume 1 of SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States (SAE International, 2007)Google Scholar
  2. 2.
    R.S. Popovic, Hall Effect Devices (CRC Press, Boca Raton, 2003)CrossRefGoogle Scholar
  3. 3.
    E. Kejik F.B. Schurig, R.S. Popovic, First fully CMOS-integrated 3D Hall probe, in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. Transducers ’05, vol 1 (2005), pp. 317–320Google Scholar
  4. 4.
    V. Hiligsmann, P. Riendeau, Monolithic 360 degrees rotary position sensor IC, in Proceedings of IEEE Sensors, vol 3 (2004), pp. 1137–1142Google Scholar
  5. 5.
    S. Leroy, S. Rigert, A. Laville, A. Ajbl, G.F. Close, Integrated Hall-based magnetic platform for position sensing, in ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, Leuven, Belgium (2017), pp. 360–363Google Scholar
  6. 6.
    C.S. Huber, O. Paul, Package stress monitor to compensate for the Piezo-Hall effect in CMOS hall sensors. IEEE Sens. J. 13(8), 2890–2898 (2013)CrossRefGoogle Scholar
  7. 7.
    ISO 26262:2011, Road vehicles — functional safetyGoogle Scholar
  8. 8.
    N. Chaabani, A methodology for analog fault injection at primitive level, in Proceedings of the Cadence User Conference 2017, EMEA - Munich, Germany, May 15–17, Session MS14Google Scholar
  9. 9.
    ISO-16750-2:2012, Road vehicles — environmental conditions and testing for electrical and electronic equipment Part 2: electrical loads, in International standard 2012 (International Organization for Standardization, 2012)Google Scholar
  10. 10.
    IEC 62132-4:2006, Integrated circuits - measurement of electromagnetic immunity 150 kHz to 1 GHz - part 4: direct RF power injection method, in International Standard 2006 (International Electrotechnical Commission, 2006)Google Scholar
  11. 11.
    ISO 7637-1:2015, Road vehicles — electrical disturbances from conduction and coupling — part 1: definitions and general Considerations (International Organization for Standardization, 2015)Google Scholar
  12. 12.
    FMC1278, Electromagnetic compatibility specification for electrical/electronic components and subsystems, in Ford Motor Company, 2016Google Scholar
  13. 13.
    GMW3097, General specification for electrical/electronic components and subsystems, in Electromagnetic Compatibility, GM, 2015Google Scholar
  14. 14.
    SAE International Surface Vehicle Information Report, in SENT – Single Edge Nibble Transmission for Automotive Applications J2716, Rev. 2008Google Scholar
  15. 15.
    L. Beaurenaut, Short PWM code: a step towards smarter automotive sensors. in Advanced Microsystems for Automotive Applications (2009), pp. 383–395Google Scholar
  16. 16.
    P. Ruther, U. Schiller, W. Buesser, R. Janke, O. Paul, Thermomagnetic residual offset in integrated hall plates. Proc. IEEE Sens. 2, 763–766 (2002)CrossRefGoogle Scholar
  17. 17.
    A.A. Bellekom, Origins of offset in conventional and spinning-current Hall plates. PhD thesis, TU Delft, Delft University of Technology, 1998Google Scholar
  18. 18.
    ISO 11452-8:2015, Road vehicles, component test methods for electrical disturbances from narrowband radiated electromagnetic energy: part 8, immunity to magnetic fieldsGoogle Scholar
  19. 19.
    M. Delbaere, Robust magnetosensitive position sensor for demanding applications. ATZ World 119(4), 54–57 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Huber, J.-W. Burssens, N. Dupré, O. Dubrulle, Y. Bidaux, G. Close, C. Schott, A gradiometric magnetic sensor system for stray-field-immune rotary position sensing in harsh environment. Proc. Eurosens. 2(13), 809 (2018)CrossRefGoogle Scholar
  21. 21.
    N. Dupré, O. Dubrulle, S. Huber, J.W. Burssens, S. Christian, G.F. Close, Experimental demonstration of stray-field immunity beyond 5 mt for an automotive-grade rotary position sensor. Proc. Eurosens. 2(13), 763 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. Laville
    • 1
    Email author
  • M. Pardoen
    • 1
  • G. Close
    • 1
  • M. Poezart
    • 1
  • D. Gerna
    • 1
  1. 1.Melexis Technologies S.A.BevaixSwitzerland

Personalised recommendations