Skip to main content
  • 1820 Accesses

Abstract

Does innovation in ADC design follow a straight-line progression? Should the pervasive use of figures of merit (FOMs) be encouraged? It is the author contention that a closer look to the symbiosis between converters applications and converters technology suggests a substantially more complex picture deserving attention. Two emerging ADC classes, the time-domain converters and compressive sampling techniques, are examples of a different view on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A theoretical upper bound of 192 dB is set by the thermal noise limits. This points to the challenge of going higher [3].

  2. 2.

    While we will refer to “time” for brevity, let it be understood that we mean “time intervals.”

  3. 3.

    A time-domain quantization error.

  4. 4.

    And we have already emphasized how time-domain resolution promises to benefit from CMOS scaling when we talked about TDCs in the previous section.

References

  1. G. Manganaro, Advanced Data Converters (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  2. D. Robertson, A. Buchwald, M. Flynn, H.-S. Lee, U.-K. Moon, B. Murmann, Data converter reflections: 19 papers from the last ten years that deserve a second look, in 2016 European Solid-State Circuits Conference (ESSCIRC) (2016), pp. 161–164

    Google Scholar 

  3. B. Murmann, The race for the extra decibel. IEEE Solid-State Circuits Mag. Summer, 58–66 (2015)

    Google Scholar 

  4. B.E. Jonsson, A survey of A/D-converter performance evolution, in IEEE Int. Conf. Electronics, Circuits and Systems (2010), pp. 766–769

    Google Scholar 

  5. R.H. Walden, Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999)

    Article  Google Scholar 

  6. G. Manganaro, Emerging data converter architectures and techniques, in 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego (CA), USA (2018)

    Google Scholar 

  7. G. Manganaro, F. Tavernier, B. Dobkin, A. de Graauw, J. Stauth, L. Loh, P. Andreani, Figures-of-merit on trial, in 2018 IEEE Int. Solid-State Circuits Conference, Evening Session (2018)

    Google Scholar 

  8. B. Murmann, ADC performance survey 1997–2017 [Online]. Available http://web.stanford.edu/~murmann/adcsurvey.html

  9. G. Manganaro, D. Leenaerts, Advances in Analog and RF IC Design for Wireless Communication Systems (Academic Press, Orlando, 2013)

    Google Scholar 

  10. J. Thompson, Z. Ge, Z.-C. Wu, R. Irmer, H. Jiang, G. Fettweis, S. Alamouti (Eds.), Special issue on “5G wireless communication systems: prospects and challenges, in IEEE Communications Magazine (2014)

    Google Scholar 

  11. S. Devarajan, L. Singer, D. Kelly, T. Pan, J. Silva, J. Brunsilius, D. Rey-Losada, F. Murden, C. Speir, J. Bray, E. Otte, N. Rakuljic, P. Brown, T. Weidgandt, Q. Yu, D. Paterson, C. Petersen, J. Gealow, G. Manganaro, A 12b 10GS/s interleaved pipeline ADC in 28nm CMOS technology, in IEEE J. Solid-State Circuits (2017)

    Google Scholar 

  12. K. Bult, in The effect of technology scaling on power dissipation in analog circuits, ed. By M. Steyaert, A.H. van Roermund, J.H. Huijsing. Analog Circuits Design (Springer, Berlin, 2006), pp. 251–290

    Google Scholar 

  13. N. Rakuljic, C. Speir, E. Otte, J. Bray, C. Petersen, G. Manganaro, In-situ nonlinear calibration of a RF signal chain, in 2018 IEEE Int. Symp. on Circuits and Systems (ISCAS), Florence, Italy (2018)

    Google Scholar 

  14. C. Toumazou, F.J. Lidgey, D.G. Haigh (Eds.), Analog IC Design: the current-mode approach, in IEE Circuits, Devices and Systems Series (1990)

    Google Scholar 

  15. G.W. Roberts, M. Ali-Bakhshian, A brief introduction to time-to-digital and digital-to-time converters. IEEE Trans. Circuits Syst. 57(3), 153–157 (2010)

    Article  Google Scholar 

  16. P.K. Hanumolu, Time-based ΔΣ ADCs, in CICC (2017)

    Google Scholar 

  17. X. Tang, W.T. Ng, K.-P. Pun, A resistor-based sub-1-V CMOS smart temperature sensor for VLSI thermal management. IEEE Trans. VLSI 23(9), 1850091 (2015)

    Google Scholar 

  18. S. Jeong et al., A fully-integrated 71 nW CMOS temperature sensor for low power wireless sensor nodes. IEEE J. Solid State Circuits 49(8), 1682–1693 (2014)

    Article  Google Scholar 

  19. N. Sayiner, H. Sorensen, T. Viswanathan, A level-crossing sampling scheme for A/D conversion. IEEE Trans. Circuits Syst. 43(4), 335–339 (1996)

    Article  Google Scholar 

  20. W. Holt, Moore’s law: a path going forward, in ISSCC (2016), pp. 8–13

    Google Scholar 

  21. A. Hajimiri, S. Limotyrakis, T.H. Lee, Jitter and phase noise in ring oscillators. IEEE J. Solid State Circuits 34(6), 790–804 (1999)

    Article  Google Scholar 

  22. D. Ponton et al., Assessment of the impact of technology scaling on the performance of LC-VCOs. in ESSCIRC (2009), pp. 364–367

    Google Scholar 

  23. S.-Y. Wu et al., A 16nm FinFET CMOS technology for mobile SoC and computing applications, in IEDM (2013)

    Google Scholar 

  24. S.-Y. Wu et al., An enhanced 16nm CMOS technology featuring 2nd generation FinFET transistors and advanced Cu/low-k interconnect for low power and high performance applications, in IEDM (2014)

    Google Scholar 

  25. Y. Tsividis, Event-driven data acquisition and digital signal processing - a tutorial. IEEE Trans. Circuits Syst. 57(8), 577–581 (2010)

    Article  MathSciNet  Google Scholar 

  26. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  27. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  28. M. Mangia, R. Rovatti, G. Setti, Rakeness in the design of analog-to-information conversion of sparse and localized signals. IEEE Trans. Circuits Syst. 59(5), 1001–1014 (2012)

    Article  MathSciNet  Google Scholar 

  29. F. Chen, A.P. Chandrakasan, V.M. Stojanovic, Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid State Circuits 47(3), 744–756 (2012)

    Article  Google Scholar 

  30. X. Chen, Z. Yu, S. Hoyos, B.M. Sadler, J. Silva-Martinez, A sub-Nyquist rate sampling receiver exploiting compressive sensing. IEEE Trans. Circuits Syst. 58(3), 507–520 (2011)

    Article  MathSciNet  Google Scholar 

  31. D. Gangopadhyay, E.G. Allstot, A.M.R. Dixon, K. Natarajan, S. Gupta, D.J. Allstot, Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid State Circuits 49(2), 426–438 (2014)

    Article  Google Scholar 

  32. M. Trakimas, R. D’Angelo, S. Aeron, T. Hancock, S. Sonkusale, A compressed sensing analog-to-information converter with edge-triggered SAR ADC Core. IEEE Trans. Circuits Syst. 60(5), 1135–1148 (2013)

    Article  MathSciNet  Google Scholar 

  33. V.R. Pamula et al., A 172 μW compressively sampled photoplethysmographic (PPG) readout ASIC with heart rate estimation directly from compressively sampled data. IEEE Trans. Biomed. Circuits Syst. 11(3), 487–496 (2017)

    Article  Google Scholar 

  34. W. Guo, Y. Kim, A.H. Tewfik, N. Sun, A fully passive compressive sensing SAR ADC for low-power wireless sensors. IEEE J. Solid State Circuits 52(8), 2154–2167 (2017)

    Article  Google Scholar 

  35. T.-F. Wu, S. Dey, M.S.-W. Chen, A nonuniform sampling ADC architecture with reconfigurable digital anti-aliasing filter. IEEE Trans. Circuits Syst. 63(10), 1639–1651 (2016)

    Article  MathSciNet  Google Scholar 

  36. T.-F. Wu, C.-R. Ho, M.S.-W. Chen, A flash-based non-uniform sampling ADC with hybrid quantization enabling digital anti-aliasing filter. IEEE J. Solid State Circuits 52(9), 2335–2349 (2017)

    Article  Google Scholar 

  37. S.-J. Huang, et al., A 125MHz-BW 71.9dB-SNDR VCO-Based CT ΔΣ ADC with segmented phase-domain ELD compensation in 16nm CMOS, in ISSCC (2017), pp. 470–471

    Google Scholar 

  38. C.-H. Weng, C.-K. Wu, T.-H. Lin, A CMOS thermistor-embedded continuous-time delta-sigma temperature sensor with a resolution FoM of 0.65pJoC2. IEEE J. Solid State Circuits 50(11), 2491–2500 (2015)

    Article  Google Scholar 

  39. P.K. Yenduri et al., A low-power compressive sampling time-based analog-to-digital converter. IEEE J. Emerg. Top. Circuits Syst. 2, 502–515 (2012)

    Article  Google Scholar 

  40. H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Design and exploration of low-power analog to information conversion based on compressed sensing. IEEE J. Emerg. Top. Circuits Syst. 2, 493–501 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Manganaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manganaro, G. (2020). Emerging ADCs. In: Baschirotto, A., Harpe, P., Makinwa, K. (eds) Next-Generation ADCs, High-Performance Power Management, and Technology Considerations for Advanced Integrated Circuits. Springer, Cham. https://doi.org/10.1007/978-3-030-25267-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25267-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25266-3

  • Online ISBN: 978-3-030-25267-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics