Skip to main content

Resonant Converters

  • Chapter
  • First Online:
Integrated High-Vin Multi-MHz Converters
  • 453 Accesses

Abstract

This chapter discusses resonant converter concepts, which overcome the efficiency decrease of hard-switching converters by achieving soft-switching of the power switches over a wide load and input-voltage range. A study based on a quasi-resonant converter demonstrates that conventional resonant converters are not suitable for widely changing input voltages and output currents due to the large switching frequency variation. A parallel-resonant converter is proposed, which overcomes these limitations. It consists of a resonant circuit attached to a conventional buck converter output stage. A mixed-signal soft-switching control, supported by a fully integrated adjustable 5-bit capacitor array, allows achieving soft-switching at both the main switch and the resonant switch over a wide input voltage range of 12–48 V and output current range of 100–500 mA. A frequency variation of 9–15 MHz is five times less compared to conventional resonant converters. Experimental results confirm peak efficiencies of 76.3% at 10.8 MHz switching. Frequencies up to 25 MHz are supported below input voltages of 24 V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn Y, Nam H, Roh J (2012) A 50-MHz fully integrated low-swing buck converter using packaging inductors. IEEE Trans Power Electron 27(10):4347–4356. https://doi.org/10.1109/TPEL.2012.2192136

    Article  Google Scholar 

  2. Aminulloh A, Kumar V, Yang SM, Sheu G (2013) Novel structure of deep trench capacitor with higher breakdown and higher capacitance density for low dropout voltage regulator. In: 2013 IEEE 10th international conference on power electronics and drive systems (PEDS), pp 389–392. https://doi.org/10.1109/PEDS.2013.6527050

  3. Chen G, Deng Y, He X, Wang Y, Zhang J (2016) Zero-voltage-switching buck converter with low-voltage stress using coupled inductor. IET Power Electron 9(4):719–727. https://doi.org/10.1049/iet-pel.2015.0267

    Article  Google Scholar 

  4. Dallago E, Quaglino R, Sassone G (1996) Single-cycle quasi-resonant converter with controlled timing of the power switches. IEEE Trans Power Electron 11(2):292–298. https://doi.org/10.1109/63.486178

    Article  Google Scholar 

  5. Funk T, Wittmann J, Rosahl T, Wicht B (2015) A 20V, 8MHz resonant DCDC converter with predictive control for 1ns resolution soft-switching. In: 2015 IEEE international symposium on circuits and systems (ISCAS), pp 1742–1745. https://doi.org/10.1109/ISCAS.2015.7168990

  6. Guo B, Dwari S, Yongduk L, Mantese J, McCabe B, Ritter A, Nies C, Priya S, Ngo K, Zhang L, Burgos R (2017) Resonant filter based buck converters with tunable capacitor. In: 2017 IEEE energy conversion congress and exposition (ECCE), pp 2036–2042. https://doi.org/10.1109/ECCE.2017.8096407

  7. Hua G, Lee FC (1995) Soft-switching techniques in PWM converters. IEEE Trans Ind Electron 42(6):595–603. https://doi.org/10.1109/41.475500

    Article  MathSciNet  Google Scholar 

  8. Ke X, Sankman J, Song MK, Forghani P, Ma DB (2016) A 3-to-40 V 10-to-30 MHz automotive-use gan driver with active BST balancing and VSW dual-edge dead-time modulation achieving 8.3% efficiency improvement and 3.4 ns constant propagation delay. In: 2016 IEEE international solid-state circuits conference (ISSCC), pp 302–304. https://doi.org/10.1109/ISSCC.2016.7418027

  9. Lee FC (1988) High-frequency quasi-resonant converter technologies. Proc IEEE 76(4):377–390. https://doi.org/10.1109/5.4424

    Article  Google Scholar 

  10. Lee DY, Lee BK, Yoo SB, Hyun DS (2000) An improved full-bridge zero-voltage-transition PWM DC/DC converter with zero-voltage/zero-current switching of the auxiliary switches. IEEE Trans Ind Appl 36(2):558–566. https://doi.org/10.1109/28.833774

    Article  Google Scholar 

  11. Liu KH, Lee FCY (1990) Zero-voltage switching technique in DC/DC converters. IEEE Trans Power Electron 5(3):293–304. https://doi.org/10.1109/63.56520

    Article  Google Scholar 

  12. Maksimovic D, Cuk S (1991) Constant-frequency control of quasi-resonant converters. IEEE Trans Power Electron 6(1):141–150. https://doi.org/10.1109/63.65012

    Article  Google Scholar 

  13. Maksimovic D, Cuk S (1991) A general approach to synthesis and analysis of quasi-resonant converters. IEEE Trans Power Electron 6(1):127–140. https://doi.org/10.1109/63.65011

    Article  Google Scholar 

  14. Mousavian H, Bakhshai A, Jain P (2016) An improved PDM control method for a high frequency quasi-resonat converter. 2016 IEEE energy conversion congress and exposition (ECCE), pp 1–8. https://doi.org/10.1109/ECCE.2016.7854846. http://ieeexplore.ieee.org/document/7854846/

  15. Park J, Kim M, Choi S (2014) Zero-current switching series loaded resonant converter insensitive to resonant component tolerance for battery charger. IET Power Electron 7(10):2517–2524. https://doi.org/10.1049/iet-pel.2013.0757

    Article  Google Scholar 

  16. Perreault DJ, Hu J, Rivas JM, Han Y, Leitermann O, Pilawa-Podgurski RCN, Sagneri A, Sullivan CR (2009) Opportunities and challenges in very high frequency power conversion. 2009 Twenty-fourth annual IEEE applied power electronics conference and exposition, pp 1–14. https://doi.org/10.1109/APEC.2009.4802625. http://ieeexplore.ieee.org/document/4802625/

  17. Rashid MH (ed) (2011) Power electronics handbook: devices, circuits, and applications, 3rd edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  18. Ryan MJ, Brumsickle WE, Divan DM, Lorenz RD (1998) A new ZVS LCL-resonant push-pull DC-DC converter topology. IEEE Trans Ind Appl 34(5):1164–1174. https://doi.org/10.1109/28.720458

    Article  Google Scholar 

  19. Sharifi S, Jabbari M (2014) Family of single-switch quasi-resonant converters with reduced inductor size. IET Power Electron 7(10):2544–2554. https://doi.org/10.1049/iet-pel.2013.0615

    Article  Google Scholar 

  20. Shenoy PS, Lazaro O, Ramani R, Amaro M, Wiktor W, Khayat J, Lynch B (2016) A 5MHz, 12V, 10A, monolithically integrated two-phase series capacitor buck converter. In: 2016 IEEE applied power electronics conference and exposition (APEC), pp 66–72. https://doi.org/10.1109/APEC.2016.7467853

  21. Song MK, Sankman J, Ma D (2014) A 6 A 40 MHz four-phase ZDS hysteretic DC-DC converter with 118 mV droop and 230 ns response time for a 5 A/5 ns load transient. In: 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC), pp 80–81. https://doi.org/10.1109/ISSCC.2014.6757346

  22. Wei K, Ma DB (2017) Comparative topology and power loss study for high power density and high conversion ratio integrated switching power converters. In: 2017 IEEE 8th Latin American symposium on circuits systems (LASCAS), pp 1–4. https://doi.org/10.1109/LASCAS.2017.7948055

  23. Wittmann J, Barner A, Rosahl T, Wicht B (2016) An 18 V input 10 MHz buck converter with 125 ps mixed-signal dead time control. IEEE J Solid State Circuits 51(7):1705–1715. https://doi.org/10.1109/JSSC.2016.2550498

    Article  Google Scholar 

  24. Wittmann J, Funk T, Rosahl T, Wicht B (2017) A 12-48 V wide-Vin 9-15 MHz soft-switching controlled resonant DCDC converter. In: ESSCIRC 2017-43rd IEEE European solid state circuits conference, pp 348–351. https://doi.org/10.1109/ESSCIRC.2017.8094597

  25. Wittmann J, Funk T, Rosahl T, Wicht B (2018) A 48-V wide-V in 9-25-MHz resonant DC-DC converter. IEEE J Solid State Circuits 53(7):1936–1944. https://doi.org/10.1109/JSSC.2018.2827953

    Article  Google Scholar 

  26. Xue J, Lee H (2016) A 2 MHz 12-to-100 V 90%-efficiency self-balancing ZVS three-level DC-DC regulator with constant-frequency AOT V2 control and 5 ns ZVS turn-on delay. In: 2016 IEEE international solid-state circuits conference (ISSCC), pp 226–227. https://doi.org/10.1109/ISSCC.2016.7417989

  27. Xue J, Lee H (2016) A 2 MHz 12–100 V 90% efficiency self-balancing zvs reconfigurable three-level DC-DC regulator with constant-frequency adaptive-on-time V 2 control and nanosecond-scale ZVS turn-on delay. IEEE J Solid State Circuits 51(12):2854–2866. https://doi.org/10.1109/JSSC.2016.2606581

    Article  Google Scholar 

  28. Zhang Y, Rodríguez M, Maksimović D (2016) Very high frequency PWM buck converters using monolithic GaN half-bridge power stages with integrated gate drivers. IEEE Trans Power Electron 31(11):7926–7942. https://doi.org/10.1109/TPEL.2015.2513058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wittmann, J. (2020). Resonant Converters. In: Integrated High-Vin Multi-MHz Converters. Springer, Cham. https://doi.org/10.1007/978-3-030-25257-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25257-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25256-4

  • Online ISBN: 978-3-030-25257-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics