Skip to main content

Motivation for High-Vin Converters and Fundamentals

  • Chapter
  • First Online:
Integrated High-Vin Multi-MHz Converters
  • 451 Accesses

Abstract

This chapter compares the system requirements for automotive, server, and other applications and shows the demand for an increasing system supply voltage. System level aspects for voltage converters, supplying electrical components, demonstrate the advantage for smaller size and efficiency of a single-step conversion to the point-of-load. A review of different DC-DC converter architectures reveals that inductive switching converters and hybrid architectures are most beneficial for these system level requirements. Buck converter fundamentals point out the impact of design parameters as the switching frequency, current ripple, or conversion ratio on the converter size and efficiency. Soft-switching and resonant converters and their benefit for efficiency are introduced. The scaling of commercial filter inductors and capacitors with respect to design parameters is presented. A review of commercially available and published state-of-the-art converters indicates the structural limitation of switching frequencies towards 30 MHz for input voltages as high as 50 V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alimadadi M, Sheikhaei S, Lemieux G, Mirabbasi S, Dunford WG, Palmer PR (2009) A fully integrated 660 MHz low-swing energy-recycling DC–DC converter. IEEE Trans Power Electron 24(6):1475–1485. https://doi.org/10.1109/TPEL.2009.2013624

    Article  Google Scholar 

  2. Avgerinou M, Bertoldi P, Castellazzi L (2017) Trends in data centre energy consumption under the European code of conduct for data centre energy efficiency. MDPI AG, Basel

    Article  Google Scholar 

  3. Barroso LA, Clidaras J, Hölzl U (2011) The datacenter as a computer, an introduction to the design of warehouse-scale machines, 2nd edn. Morgan and Claypool Publishers, San Rafael

    Google Scholar 

  4. Bathily M, Allard B, Hasbani F (2012) A 200-MHz integrated buck converter with resonant gate drivers for an RF power amplifier. IEEE Trans Power Electron 27(2):610–613. https://doi.org/10.1109/TPEL.2011.2119380

    Article  Google Scholar 

  5. Bergveld HJ, Nowak K, Karadi R, Iochem S, Ferreira J, Ledain S, Pieraerts E, Pommier M (2009) A 65-nm-CMOS 100-MHz 87%-efficient DC-DC down converter based on dual-die system-in-package integration. In: 2009 IEEE energy conversion congress and exposition, pp 3698–3705. https://doi.org/10.1109/ECCE.2009.5316334

  6. Commercial Devices (2015) Selection of available converters on the market: LT1076-5, LT3435, LT3481, LT3502, LT3505, LT3686, LT3689, LT3976, LT3990, LT8610, LTC3410, LTC3411A, LTC3561, LTC3564, LTC3565, LTC3568, LTC3601, LTC3604, LTC3612, LTC3614, LTC3616 (www.analog.com), TPS62615 (www.ti.com)

  7. Els P (2015) 48 volt electrification: the next step to achieving 2020 emissions

    Google Scholar 

  8. European Union (2014) Directive 2014/35/EU of the European parliament and of the council of 26 February 2014. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0035

  9. Funk T, Wittmann J, Rosahl T, Wicht B (2015) A 20V, 8MHz resonant DCDC converter with predictive control for 1ns resolution soft-switching. In: 2015 IEEE international symposium on circuits and systems (ISCAS), pp 1742–1745. https://doi.org/10.1109/ISCAS.2015.7168990

  10. Ganjavi A, Ghoreishy H, Ahmad AA (2018) A novel single-input dual-output three-level DC–DC converter. IEEE Trans Ind Electron 65(10):8101–8111. https://doi.org/10.1109/TIE.2018.2807384

    Article  Google Scholar 

  11. Gartner (2018) Worldwide server shipments 2010–2017. https://www.statista.com/statistics/219596/worldwide-server-shipments-by-vendor/

  12. Hazucha P, Schrom G, Hahn J, Bloechel BA, Hack P, Dermer GE, Narendra S, Gardner D, Karnik T, De V, Borkar S (2005) A 233-MHz 80%–87% efficient four-phase DC-DC converter utilizing air-core inductors on package. IEEE J Solid-State Circuits 40(4):838–845. https://doi.org/10.1109/JSSC.2004.842837

    Article  Google Scholar 

  13. Huang C, Mok PKT (2013) An 82.4% efficiency package-bondwire-based four-phase fully integrated buck converter with flying capacitor for area reduction. In: 2013 IEEE international solid-state circuits conference digest of technical papers, pp 362–363. https://doi.org/10.1109/ISSCC.2013.6487770

  14. IEC (12/2005) International standard IEC60950-1

    Google Scholar 

  15. Ishida K, Takemura K, Baba K, Takamiya M, Sakurai T (2010) 3D stacked buck converter with 15μm thick spiral inductor on silicon interposer for fine-grain power-supply voltage control in SiP’s. In: 2010 IEEE International 3D Systems Integration Conference (3DIC), pp 1–4. https://doi.org/10.1109/3DIC.2010.5751437

  16. Jiang Y, Fayed A (2016) A 1A, dual-inductor 4-output buck converter with 20MHz/100MHz dual-frequency switching and integrated output filters in 65 nm CMOS. IEEE J Solid-State Circuits 51(10):2485–2500. https://doi.org/10.1109/JSSC.2016.2588466

    Article  Google Scholar 

  17. Ke X, Sankman J, Ma D (2016) A 5MHz, 24V-to-1.2V, AO2T current mode buck converter with one-cycle transient response and sensorless current detection for medical meters. In: 2016 IEEE applied power electronics conference and exposition (APEC), pp 94–97. https://doi.org/10.1109/APEC.2016.7467857

  18. Kiani MH, Stauth JT (2017) Optimization and comparison of hybrid-resonant switched capacitor DC-DC converter topologies. In: 2017 IEEE 18th workshop on control and modeling for power electronics (COMPEL), pp 1–8. https://doi.org/10.1109/COMPEL.2017.8013321

  19. Kim D, He J, Figueroa DG (2016) 48V power delivery to Grantley reference board. Presented at the IEEE applied power electronics conference and exposition (APEC) 2016, Long Beach, USA

    Google Scholar 

  20. Koomey JG (2011) Growth in data center electricity use 2005 to 2010. Tech. rep., Stanford University, Stanford

    Google Scholar 

  21. Kudva SS, Harjani R (2010) Fully integrated on-chip DC-DC converter with a 450x output range. In: IEEE custom integrated circuits conference 2010, pp 1–4. https://doi.org/10.1109/CICC.2010.5617588

    Google Scholar 

  22. Li P, Bhatia D, Xue L, Bashirullah R (2011) A 90–240 MHz hysteretic controlled DC-DC buck converter with digital phase locked loop synchronization. IEEE J Solid-State Circuits 46(9):2108–2119. https://doi.org/10.1109/JSSC.2011.2139550

    Article  Google Scholar 

  23. Ling R, Shu Z (2016) A piecewise sliding-mode controller for three level buck DC-DC converters. In: 2016 Chinese control and decision conference (CCDC), pp 643–648. https://doi.org/10.1109/CCDC.2016.7531064

  24. Ling R, Shu Z, Hu Q, Song Y (2018) Second-order sliding-mode controlled three-level buck DC-DC converters. IEEE Trans Ind Electron 65(1):898–906. https://doi.org/10.1109/TIE.2017.2750610

    Article  Google Scholar 

  25. Liu KH, Lee FCY (1990) Zero-voltage switching technique in DC/DC converters. IEEE Trans Power Electron 5(3):293–304. https://doi.org/10.1109/63.56520

    Article  Google Scholar 

  26. Liu X, Mok PKT, Jiang J, Ki W (2016) Analysis and design considerations of integrated 3-level buck converters. IEEE Trans Circuits Syst I 63(5):671–682. https://doi.org/10.1109/TCSI.2016.2556098

    Article  Google Scholar 

  27. Liu Y, Kumar A, Pervaiz S, Maksimovic D, Afridi KK (2017) A high-power-density low-profile DC-DC converter for cellphone battery charging applications. In: 2017 IEEE 18th workshop on control and modeling for power electronics (COMPEL), pp 1–6. https://doi.org/10.1109/COMPEL.2017.8013362

  28. Liu X, Huang C, Mok PKT (2018) A high-frequency three-level buck converter with real-time calibration and wide output range for fast-DVS. IEEE J Solid-State Circuits 53(2):582–595. https://doi.org/10.1109/JSSC.2017.2755683

    Article  Google Scholar 

  29. Lu D, Yu J, Hong Z, Mao J, Zhao H (2012) A 1500mA, 10MHz on-time controlled buck converter with ripple compensation and efficiency optimization. In: 2012 Twenty-seventh annual IEEE applied power electronics conference and exposition (APEC), pp 1232–1237. https://doi.org/10.1109/APEC.2012.6165976

  30. Lutz D, Renz P, Wicht B (2016) A 10mW fully integrated 2-to-13V-input buck-boost SC converter with 81.5% peak efficiency. In: 2016 IEEE international solid-state circuits conference ISSCC, pp 224–225. https://doi.org/10.1109/ISSCC.2016.7417988

  31. Maity A, Patra A, Yamamura N, Knight J (2011) Design of a 20 MHz DC-DC buck converter with 84 percent efficiency for portable applications. In: 2011 24th international conference on VLSI design (VLSI Design), pp 316–321. https://doi.org/10.1109/VLSID.2011.37

  32. Mills MP (2013) The cloud begins with coal, big data, big networks, big infrastructure, and big power, an overview of the electricity used by the global digital ecosystem. Tech. rep., Techpundit, Houston

    Google Scholar 

  33. Moursy Y, Quelen A, Pillonnet G (2017) Challenges for fully-integrated resonant switched capacitor converters in CMOS technologies. In: 2017 24th IEEE international conference on electronics, circuits and systems (ICECS), pp 198–201. https://doi.org/10.1109/ICECS.2017.8292101

  34. Mousavian H, Bakhshai A, Jain P (2016) An improved PDM control method for a high frequency quasi-resonant converter. In: 2016 IEEE energy conversion congress and exposition (ECCE), pp 1–8. https://doi.org/10.1109/ECCE.2016.7854846

  35. Nikolic T (2016) Audi SQ7 debuts with world-first electric turbocharging. https://www.caradvice.com.au/422503/audi-sq7-debuts-with-world-first-electric-turbocharging/

  36. Pasternak S, Schaef C, Stauth J (2016) Equivalent resistance approach to optimization, analysis and comparison of hybrid/resonant switched-capacitor converters. In: 2016 IEEE 17th workshop on control and modeling for power electronics (COMPEL), pp 1–8. https://doi.org/10.1109/COMPEL.2016.7556737

  37. Pasternak SR, Kiani MH, Rentmeister JS, Stauth JT (2017) Modeling and performance limits of switched-capacitor DC-DC converters capable of resonant operation with a single inductor. IEEE J Emer Sel Topics Power Electron 5(4):1746–1760. https://doi.org/10.1109/JESTPE.2017.2730823

    Article  Google Scholar 

  38. Peng H, Pala V, Chow TP, Hella M (2010) A 150MHz, 84% efficiency, two phase interleaved DC-DC converter in AlGaAs/GaAs P-HEMT technology for integrated power amplifier modules. In: 2010 IEEE radio frequency integrated circuits symposium, pp 259–262. https://doi.org/10.1109/RFIC.2010.5477346

  39. Perreault DJ, Hu J, Rivas JM, Han Y, Leitermann O, Pilawa-Podgurski RCN, Sagneri A, Sullivan CR (2009) Opportunities and challenges in very high frequency power conversion. In: 2009 Twenty-fourth annual IEEE applied power electronics conference and exposition, pp 1–14. https://doi.org/10.1109/APEC.2009.4802625

  40. Sarafianos A, Steyaert M (2015) Fully integrated wide input voltage range capacitive DC-DC converters: the folding Dickson converter. IEEE J Solid-State Circuits 50(7):1560–1570. https://doi.org/10.1109/JSSC.2015.2410800

    Article  Google Scholar 

  41. Schaef C, Stauth JT (2018) A highly integrated series–parallel switched-capacitor converter with 12V input and quasi-resonant voltage-mode regulation. IEEE J Emer Sel Topics Power Electron 6(2):456–464. https://doi.org/10.1109/JESTPE.2017.2762083

    Article  Google Scholar 

  42. Schaef C, Din E, Stauth JT (2017) A digitally controlled 94.8%-peak-efficiency hybrid switched-capacitor converter for bidirectional balancing and impedance-based diagnostics of lithium-ion battery arrays. In: 2017 IEEE international solid-state circuits conference (ISSCC), pp 180–181. https://doi.org/10.1109/ISSCC.2017.7870320

  43. Schrom G, Hazucha P, Hahn J, Gardner DS, Bloechel BA, Dermer G, Narendra SG, Karnik T, De V (2004) A 480-MHz, multi-phase interleaved buck DC-DC converter with hysteretic control. In: 2004 IEEE 35th annual power electronics specialists conference (IEEE Cat. No.04CH37551), vol 6, pp 4702–4707. https://doi.org/10.1109/PESC.2004.1354830

  44. Schrom G, Hazucha P, Paillet F, Rennie DJ, Moon ST, Gardner DS, Kamik T, Sun P, Nguyen TT, Hill MJ, Radhakrishnan K, Memioglu T (2007) A 100MHz eight-phase buck converter delivering 12A in 25mm2 using air-core inductors. In: APEC 07 – Twenty-second annual IEEE applied power electronics conference and exposition, pp 727–730. https://doi.org/10.1109/APEX.2007.357595

  45. Sridhar N (2013) Power electronics in automotive applications. Tech. rep., Texas Instruments, Dallas

    Google Scholar 

  46. Sturcken N, Petracca M, Warren S, Carloni LP, Peterchev AV, Shepard KL (2011) An integrated four-phase buck converter delivering 1A/mm2 with 700ps controller delay and network-on-chip load in 45-nm SOI. In: 2011 IEEE custom integrated circuits conference (CICC), pp 1–4. https://doi.org/10.1109/CICC.2011.6055336

  47. Sturcken N, O’Sullivan E, Wang N, Herget P, Webb B, Romankiw L, Petracca M, Davies R, Fontana R, Decad G, Kymissis I, Peterchev A, Carloni L, Gallagher W, Shepard K (2012) A 2.5D integrated voltage regulator using coupled-magnetic-core inductors on silicon interposer delivering 10.8A/mm2. In: 2012 IEEE international solid-state circuits conference, pp 400–402. https://doi.org/10.1109/ISSCC.2012.6177064

  48. USB Specification (2017) Universal Serial Bus Revision 3.2 Specification. USB 3.0 Promoter Group, rev. 1.0

    Google Scholar 

  49. Van Breussegem T, Steyaert M (2012) CMOS Integrated Capacitive DC-DC Converters. Springer Science & Business Media, Berlin

    Google Scholar 

  50. Villar G, Alarcon E (2008) Monolithic integration of a 3-level DCM-operated low-floating-capacitor buck converter for DC-DC step-down conversion in standard CMOS. In: 2008 IEEE power electronics specialists conference, pp 4229–4235. https://doi.org/10.1109/PESC.2008.4592620

  51. Vukadinović N, Prodić A, Miwa BA, Arnold CB, Baker MW (2016) Extended wide-load range model for multi-level DC-DC converters and a practical dual-mode digital controller. In: 2016 IEEE applied power electronics conference and exposition (APEC), pp 1597–1602. https://doi.org/10.1109/APEC.2016.7468080

  52. Wens M, Steyaert M (2009) An 800mW fully-integrated 130nm CMOS DC-DC step-down multi-phase converter, with on-chip spiral inductors and capacitors. In: 2009 IEEE energy conversion congress and exposition, pp 3706–3709. https://10.1109/ECCE.2009.5316434

    Google Scholar 

  53. Wibben J, Harjani R (2007) A high efficiency DC-DC converter using 2nH on-chip inductors. In: 2007 IEEE symposium on VLSI circuits, pp 22–23. https://doi.org/10.1109/VLSIC.2007.4342750

  54. Wu F (2017) 48V: an improved power delivery system for data centers. White paper, Wiwynn, Taiwan

    Google Scholar 

  55. Xue J, Lee H (2016) A 2MHz 12-to-100V 90%-efficiency self-balancing ZVS three-level DC-DC regulator with constant-frequency AOT V2 control and 5ns ZVS turn-on delay. In: 2016 IEEE international solid-state circuits conference (ISSCC), pp 226–227. https://doi.org/10.1109/ISSCC.2016.7417989

  56. Xue J, Lee H (2016) A 2MHz 12–100V 90% efficiency self-balancing ZVS reconfigurable three-level DC-DC regulator with constant-frequency adaptive-on-time V 2 control and nanosecond-scale ZVS turn-on delay. IEEE J Solid-State Circuits 51(12):2854–2866. https://doi.org/10.1109/JSSC.2016.2606581

    Article  Google Scholar 

  57. Zhang W, Liu Y, Li Z, Zhang X (2009) The dynamic power loss analysis in buck converter. In: 2009 IEEE 6th international power electronics and motion control conference, pp 362–367. https://doi.org/10.1109/IPEMC.2009.5157413

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Figure 2.20 depicts a summary of all buck converter’s output inductors analyzed in Sect. 2.3.3. For each operating point, a large variety of different inductors are available. The best compromise between volume, size, and inductor losses have to be found, depending on the system requirements.

Fig. 2.20
figure 20

Losses of selected inductors with a reasonable price or volume plotted versus f sw at (left) and versus at (right)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wittmann, J. (2020). Motivation for High-Vin Converters and Fundamentals. In: Integrated High-Vin Multi-MHz Converters. Springer, Cham. https://doi.org/10.1007/978-3-030-25257-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25257-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25256-4

  • Online ISBN: 978-3-030-25257-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics