Skip to main content

Introduction

  • Chapter
  • First Online:
Integrated High-Vin Multi-MHz Converters
  • 418 Accesses

Abstract

The continuous trend towards higher integration of electrical circuits enables many new functions in a wide range of applications. Systems-on-a-chip (SoC) has become common, in which often most or all of the electrical functionalities are realized on one single chip. The power management is one fundamental key aspect to be considered to achieve a high integration of these systems. Compact voltage converters are required to be integrated within an SoC or close to the point-of-load. A wide range of possible system supply voltages and a high number of different power specifications of the supplied components often require a specific voltage converter for each component in an electrical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alimadadi M, Sheikhaei S, Lemieux G, Mirabbasi S, Dunford WG, Palmer PR (2009) A fully integrated 660 MHz low-swing energy-recycling DC–DC converter. IEEE Trans Power Electr 24(6):1475–1485. https://doi.org/10.1109/TPEL.2009.2013624

    Article  Google Scholar 

  2. Bathily M, Allard B, Hasbani F (2012) A 200-MHz integrated buck converter with resonant gate drivers for an RF power amplifier. IEEE Trans Power Electr 27(2):610–613. https://doi.org/10.1109/TPEL.2011.2119380

    Article  Google Scholar 

  3. BBC (2016) Human ‘drone taxi’ to be tested in Nevada. https://www.bbc.com/news/technology-36478614

  4. Bergveld HJ, Nowak K, Karadi R, Iochem S, Ferreira J, Ledain S, Pieraerts E, Pommier M (2009) A 65-nm-CMOS 100-MHz 87%-efficient DC-DC down converter based on dual-die system-in-package integration. In: 2009 IEEE energy conversion congress and exposition, pp 3698–3705. https://doi.org/10.1109/ECCE.2009.5316334

  5. Hazucha P, Schrom G, Hahn J, Bloechel BA, Hack P, Dermer GE, Narendra S, Gardner D, Karnik T, De V, Borkar S (2005) A 233-MHz 80%–87% efficient four-phase DC-DC converter utilizing air-core inductors on package. IEEE J Solid-State Circuits 40(4):838–845. https://doi.org/10.1109/JSSC.2004.842837

    Article  Google Scholar 

  6. Huang C, Mok PKT (2013) An 82.4% efficiency package-bondwire-based four-phase fully integrated buck converter with flying capacitor for area reduction. In: 2013 IEEE International solid-state circuits conference digest of technical papers, pp 362–363. https://doi.org/10.1109/ISSCC.2013.6487770

  7. Ishida K, Takemura K, Baba K, Takamiya M, Sakurai T (2010) 3D stacked buck converter with 15 μm thick spiral inductor on silicon interposer for fine-grain power-supply voltage control in SiP’s. In: 2010 IEEE International 3D systems integration conference (3DIC), pp 1–4. https://doi.org/10.1109/3DIC.2010.5751437

  8. Kudva SS, Harjani R (2010) Fully integrated on-chip DC-DC converter with a 450 × output range. In: IEEE custom integrated circuits conference 2010, pp 1–4. https://doi.org/10.1109/CICC.2010.5617588

    Google Scholar 

  9. Kumawat AK, Thakur AK (2017) A comprehensive study of automotive 48-volt technology. SSRG Int J Mech Eng 4(5):7–14

    Article  Google Scholar 

  10. Li X, Jiang S (2017) Google 48V power architecture. Plenary talk at Applied Power Electronics Conference and Exposition 2017, Google

    Google Scholar 

  11. Li P, Bhatia D, Xue L, Bashirullah R (2011) A 90–240 MHz hysteretic controlled DC-DC buck converter with digital phase locked loop synchronization. IEEE J Solid-State Circuits 46(9):2108–2119. https://doi.org/10.1109/JSSC.2011.2139550

    Article  Google Scholar 

  12. Lu D, Yu J, Hong Z, Mao J, Zhao H (2012) A 1500 mA, 10 MHz on-time controlled buck converter with ripple compensation and efficiency optimization. In: 2012 Twenty-seventh annual IEEE applied power electronics conference and exposition (APEC), pp 1232–1237. https://doi.org/10.1109/APEC.2012.6165976

  13. Maity A, Patra A, Yamamura N, Knight J (2011) Design of a 20 MHz DC-DC buck converter with 84 percent efficiency for portable applications. In: 2011 24th International conference on VLSI design (VLSI Design), pp 316–321. https://doi.org/10.1109/VLSID.2011.37

  14. Muoio D (2017) RANKED: The 18 companies most likely to get self-driving cars on the road first. https://www.businessinsider.de/the-companies-most-likely-to-get-driverless-cars-on-the-road-first-2017-4?r=US&IR=T

  15. Neveu F, Allard B, Martin C (2016) A review of state-of-the-art and proposal for high frequency inductive step-down DC-DC converter in advanced CMOS. Analog Integr Circuits Signal Process 87(2):201–211. https://doi.org/10.1007/s10470-015-0683-z

    Article  Google Scholar 

  16. Peng H, Pala V, Chow TP, Hella M (2010) A 150MHz, 84% efficiency, two phase interleaved DC-DC converter in AlGaAs/GaAs P-HEMT technology for integrated power amplifier modules. In: 2010 IEEE radio frequency integrated circuits symposium, pp 259–262. https://doi.org/10.1109/RFIC.2010.5477346

  17. Rix J (2018) Ten electric cars we’re excited about in 2018. https://www.topgear.com/car-news/electric/ten-electric-cars-were-excited-about-2018

  18. Sanders SR, Alon E, Le HP, Seeman MD, John M, Ng VW (2013) The road to fully integrated DC-DC conversion via the switched-capacitor approach. IEEE Trans Power Electron 28(9):4146–4155. https://doi.org/10.1109/TPEL.2012.2235084

    Article  Google Scholar 

  19. Schrom G, Hazucha P, Hahn J, Gardner DS, Bloechel BA, Dermer G, Narendra SG, Karnik T, De V (2004) A 480-MHz, multi-phase interleaved buck DC-DC converter with hysteretic control. In: 2004 IEEE 35th annual power electronics specialists conference (IEEE Cat. No.04CH37551), vol 6, pp 4702–4707. https://doi.org/10.1109/PESC.2004.1354830

  20. Schrom G, Hazucha P, Paillet F, Rennie DJ, Moon ST, Gardner DS, Kamik T, Sun P, Nguyen TT, Hill MJ, Radhakrishnan K, Memioglu T (2007) A 100MHz eight-phase buck converter delivering 12A in 25 mm2 using air-core inductors. In: APEC 07 – Twenty-second annual IEEE applied power electronics conference and exposition, pp 727–730. https://doi.org/10.1109/APEX.2007.357595

  21. Sturcken N, Petracca M, Warren S, Carloni LP, Peterchev AV, Shepard KL (2011) An integrated four-phase buck converter delivering 1A/mm2 with 700ps controller delay and network-on-chip load in 45-nm SOI. In: 2011 IEEE custom integrated circuits conference (CICC), pp 1–4. https://doi.org/10.1109/CICC.2011.6055336

  22. Sturcken N, O’Sullivan E, Wang N, Herget P, Webb B, Romankiw L, Petracca M, Davies R, Fontana R, Decad G, Kymissis I, Peterchev A, Carloni L, Gallagher W, Shepard K (2012) A 2.5D integrated voltage regulator using coupled-magnetic-core inductors on silicon interposer delivering 10.8A/mm2. In: 2012 IEEE International solid-state circuits conference, pp 400–402. https://doi.org/10.1109/ISSCC.2012.6177064

  23. Villar G, Alarcon E (2008) Monolithic integration of a 3-level DCM-operated low-floating-capacitor buck converter for DC-DC step-down donversion in standard CMOS. In: 2008 IEEE power electronics specialists conference, pp 4229–4235. https://doi.org/10.1109/PESC.2008.4592620

  24. Villar-Piqué G, Bergveld HJ, Alarcón E (2013) Survey and benchmark of fully integrated switching power converters: switched-capacitor versus inductive approach. IEEE Trans Power Electron 28(9):4156–4167. https://doi.org/10.1109/TPEL.2013.2242094

    Article  Google Scholar 

  25. Wens M, Steyaert M (2009) An 800mW fully-integrated 130nm CMOS DC-DC step-down multi-phase converter, with on-chip spiral inductors and capacitors. In: 2009 IEEE energy conversion congress and exposition, pp 3706–3709. https://doi.org/10.1109/ECCE.2009.5316434

  26. Wibben J, Harjani R (2007) A high efficiency DC-DC converter using 2nH on-chip inductors. In: 2007 IEEE symposium on VLSI circuits, pp 22–23. https://doi.org/10.1109/VLSIC.2007.4342750

  27. Wu F (2017) 48V: An improved power delivery system for data centers. White paper, Wiwynn, Taiwan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wittmann, J. (2020). Introduction. In: Integrated High-Vin Multi-MHz Converters. Springer, Cham. https://doi.org/10.1007/978-3-030-25257-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25257-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25256-4

  • Online ISBN: 978-3-030-25257-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics