Skip to main content

System Dynamics of a Single-Shaft Turbojet Engine Using Pseudo Bond Graph

  • Conference paper
  • First Online:
Book cover New Results in Numerical and Experimental Fluid Mechanics XII (DGLR 2018)

Abstract

The system performance of a single-shaft turbojet engine is modelled with the pseudo bond graph approach in this paper. This theory is implemented in the in-house software tool ASTOR (AircraftEngine Simulation of Transient Operation Research) to simulate the overall dynamic of the turbojet model engine P200SX. In ASTOR, the transient performance is calculated with dynamic and individual control volumes to determine the three conservation equations.

In this investigation a stationary operating point and a transient load case are simulated and compared to results of a commercial software and a measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

area

AD :

actuator disk

ASTOR :

AircraftEngine Simulation of Transient Operation Research

BTC :

burner time constant

c :

mean streamwise velocity

\(c_v\), \(c_p\):

specific heat coefficient

C :

capacity and mean streamwise velocity

\(C_T\) :

thermodynamic accumulator

E :

internal energy

F :

pressure and momentum forces

h :

specific enthalpy

io:

in-, outcoming

I :

inertia

J :

spool inertia

\(\kappa \) :

polytropic exponent

\(\dot{m}\), \(\dot{m}_f\):

mass, fuel flow

p :

pressure

R :

resistor

R :

specific gas constant

\(\rho \) :

density

s :

specific entropy

t :

time

T :

temperature

TET :

turbine entry temperature

\(\tau \) :

torque

V :

volume

\(\omega \) :

spool speed

References

  1. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems. Wiley, Hoboken (2012)

    Book  Google Scholar 

  2. Karnopp, D.: Pseudo bond graphs for thermal energy transport. J. Dyn. Syst. Meas. Contr. 100(3), 165–169 (1978)

    Article  MathSciNet  Google Scholar 

  3. Uddin, N., Gravdahl, J.T.: Bond graph modeling of centrifugal compression systems. Simulation 91(11), 998–1013 (2015)

    Article  Google Scholar 

  4. Munari, E., Morini, M., Pinelli, M., Spina, P.R.: Experimental investigation and modeling of surge in a multistage compressor. Energy Procedia 105, 1751–1756 (2017)

    Article  Google Scholar 

  5. Krikelis, N.J., Papadakis, F.: Gas turbine modelling using pseudo-bond graphs. Int. J. Syst. Sci. 19(4), 537–550 (1988)

    Article  Google Scholar 

  6. Montazeri-Gh, M., Fashandi, S.: Application of bond graph approach in dynamic modelling of industrial gas turbine. Mech. Ind. 18(4), 410 (2017)

    Article  Google Scholar 

  7. Montazeri-Gh, M., Fashandi, S.: Bond graph modeling of a jet engine with electric starter. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 233(9), 3193–3210 (2018)

    Article  Google Scholar 

  8. Ingenieurbüro CAT M.Zipperer GmbH (2018). www.jetcat.de

  9. GasTurb GmbH, GasTurb 12 (2018). www.gasturb.de

  10. Geckler, M., Holz, N., Knoblauch, J., Papke, R., Ulatowski, L.: Experimentelle und simulierte Leistungsdatenuntersuchung eines Modellstrahltriebwerks, Projektarbeit Technische Universität Braunschweig (2018)

    Google Scholar 

  11. Göing, J., Kellersmann, A., Bode, C., Friedrichs, J.: Jet propulsion engine modelling using pseudo bond graph approach. ASME Turbo Expo. Forthcoming (2019)

    Google Scholar 

  12. Kurzke, J.: How to get component maps for aircraft gas turbine performance calculations. In: ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers (1996)

    Google Scholar 

  13. Bräunling, W.J.: Flugzeugtriebwerke: Grundlagen, Aero-Thermodynamik, ideale und reale Kreisprozesse, Thermische Turbomaschinen, Komponenten, Emissionen und Systeme. Springer (2015)

    Google Scholar 

  14. Rick, H.: Gasturbinen und Flugantriebe: Grundlagen Betriebsverhalten und Simulation. Springer (2013)

    Google Scholar 

  15. Walsh, P.P., Fletcher, P.: Gas Turbine Performance. Wiley, Hoboken (2004)

    Book  Google Scholar 

Download references

Acknowledgement

The authors kindly thank the German Research Foundation (DFG) for the financial support to undergo the research project D6 “Interaction of combined module variances and influence on the overall system behavior” within the Collaborative Research Center (CRC) 871 - Regeneration of Complex Capital Goods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Göing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Göing, J., Kellersmann, A., Bode, C., Friedrichs, J. (2020). System Dynamics of a Single-Shaft Turbojet Engine Using Pseudo Bond Graph. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Tropea, C., Jakirlić, S. (eds) New Results in Numerical and Experimental Fluid Mechanics XII. DGLR 2018. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-030-25253-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25253-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25252-6

  • Online ISBN: 978-3-030-25253-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics