Skip to main content

Advanced Intracranial Vessel Wall Imaging and Future Directions

  • Chapter
  • First Online:
Book cover Vessel Based Imaging Techniques

Abstract

Intracranial vessel wall imaging is a rapidly evolving method for identifying and characterizing neurovascular disease and is complementary to conventional angiographic imaging techniques such as catheter angiography, CT angiography, and MR angiography. It can diagnose etiologies underlying intracranial stenosis, identify culprit plaques in the setting of ischemic stroke, and characterize ruptured aneurysm in the setting of subarachnoid hemorrhage or unstable/at-risk aneurysms. In this chapter, we review the current literature and potential future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qiao Y, Steinman DA, Qin Q, Etesami M, Schär M, Astor BC, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging. 2011;34:22–30. https://doi.org/10.1002/jmri.22592.

    Article  PubMed  Google Scholar 

  2. Saba L, Yuan C, Hatsukami TS, Balu N, Qiao Y, DeMarco JK, et al. Carotid artery wall imaging: perspective and guidelines from the ASNR Vessel Wall Imaging Study Group and Expert Consensus Recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol. 2018;39:E9–31. https://doi.org/10.3174/ajnr.A5488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wasserman BA, Smith WI, Trout HH, Cannon RO, Balaban RS, Arai AE. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology. 2002;223:566–73. https://doi.org/10.1148/radiol.2232010659.

    Article  PubMed  Google Scholar 

  4. Antiga L, Wasserman BA, Steinman DA. On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging. Magn Reson Med. 2008;60:1020–8. https://doi.org/10.1002/mrm.21758.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu XJ, Du B, Lou X, Hui FK, Ma L, Zheng BW, et al. Morphologic characteristics of atherosclerotic middle cerebral arteries on 3T high-resolution MRI. AJNR Am J Neuroradiol. 2013;34:1717–22. https://doi.org/10.3174/ajnr.A3573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qiao Y, Anwar Z, Intrapiromkul J, Liu L, Zeiler SR, Leigh R, et al. Patterns and implications of intracranial arterial remodeling in stroke patients. Stroke. 2016;47:434–40. https://doi.org/10.1161/STROKEAHA.115.009955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mandell DM, Mossa-Basha M, Qiao Y, Hess CP, Hui F, Matouk C, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol. 2017;38:218–29. https://doi.org/10.3174/ajnr.A4893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Portanova A, Hakakian N, Mikulis DJ, Virmani R, Abdalla WMA, Wasserman BA. Intracranial vasa vasorum: insights and implications for imaging. Radiology. 2013;267:667–79. https://doi.org/10.1148/radiol.13112310.

    Article  PubMed  Google Scholar 

  9. Connolly ES, Huang J, Goldman JE, Holtzman RN. Immunohistochemical detection of intracranial vasa vasorum: a human autopsy study. Neurosurgery. 1996;38:789–93.

    Article  PubMed  Google Scholar 

  10. Takaba M, Endo S, Kurimoto M, Kuwayama N, Nishijima M, Takaku A. Vasa vasorum of the intracranial arteries. Acta Neurochir. 1998;140:411–6.

    Article  CAS  PubMed  Google Scholar 

  11. Maiellaro K, Taylor WR. The role of the adventitia in vascular inflammation. Cardiovasc Res. 2007;75:640–8. https://doi.org/10.1016/j.cardiores.2007.06.023.

    Article  CAS  PubMed  Google Scholar 

  12. Bae H-J, Yoon B-W, Kang D-W, Koo J-S, Lee S-H, Kim K-B, et al. Correlation of coronary and cerebral atherosclerosis: difference between extracranial and intracranial arteries. Cerebrovasc Dis. 2006;21:112–9. https://doi.org/10.1159/000090209.

    Article  PubMed  Google Scholar 

  13. Qiao Y, Etesami M, Astor BC, Zeiler SR, Trout HH, Wasserman BA. Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events. AJNR Am J Neuroradiol. 2012;33:755–60. https://doi.org/10.3174/ajnr.A2863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wong LKS. Global burden of intracranial atherosclerosis. Int J Stroke. 2006;1:158–9. https://doi.org/10.1111/j.1747-4949.2006.00045.x.

    Article  PubMed  Google Scholar 

  15. Suri MFK, Johnston SC. Epidemiology of intracranial stenosis. J Neuroimaging. 2009;19(S1):11S–6S. https://doi.org/10.1111/j.1552-6569.2009.00415.x.

    Article  PubMed  Google Scholar 

  16. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5. https://doi.org/10.1056/NEJM198705283162204.

    Article  CAS  PubMed  Google Scholar 

  17. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105:939–43.

    Article  PubMed  Google Scholar 

  18. White AJ, Duffy SJ, Walton AS, Ng JF, Rice GE, Mukherjee S, et al. Matrix metalloproteinase-3 and coronary remodelling: implications for unstable coronary disease. Cardiovasc Res. 2007;75:813–20. https://doi.org/10.1016/j.cardiores.2007.05.003.

    Article  CAS  PubMed  Google Scholar 

  19. Qiao Y, Zeiler SR, Mirbagheri S, Leigh R, Urrutia V, Wityk R, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology. 2014;271:534–42. https://doi.org/10.1148/radiol.13122812.

    Article  PubMed  Google Scholar 

  20. Qiao Y, Guallar E, Suri FK, Liu L, Zhang Y, Anwar Z, et al. MR imaging measures of intracranial atherosclerosis in a population-based study. Radiology. 2016;280:860–8. https://doi.org/10.1148/radiol.2016151124.

    Article  PubMed  Google Scholar 

  21. Mossa-Basha M, Hwang WD, De Havenon A, Hippe D, Balu N, Becker KJ, et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke. 2015;46:1567–73. https://doi.org/10.1161/STROKEAHA.115.009037.

    Article  PubMed  Google Scholar 

  22. Qiao Y, Suri FK, Zhang Y, Liu L, Gottesman R, Alonso A, et al. Racial differences in prevalence and risk for intracranial atherosclerosis in a US Community-Based Population. JAMA Cardiol. 2017;2:1341–8. https://doi.org/10.1001/jamacardio.2017.4041.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kontzialis M, Wasserman BA. Intracranial vessel wall imaging: current applications and clinical implications. Neurovasc Imaging. 2016;2:4. https://doi.org/10.1186/s40809-016-0014-5.

    Article  Google Scholar 

  24. Swartz RH, Bhuta SS, Farb RI, Agid R, Willinsky RA, Terbrugge KG, et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology. 2009;72:627–34. https://doi.org/10.1212/01.wnl.0000342470.69739.b3.

    Article  CAS  PubMed  Google Scholar 

  25. Chen XY, Wong KS, Lam WWM, Zhao H-L, Ng HK. Middle cerebral artery atherosclerosis: histological comparison between plaques associated with and not associated with infarct in a postmortem study. Cerebrovasc Dis. 2008;25:74–80. https://doi.org/10.1159/000111525.

    Article  PubMed  Google Scholar 

  26. Mazighi M, Labreuche J, Gongora-Rivera F, Duyckaerts C, Hauw J-J, Amarenco P. Autopsy prevalence of proximal extracranial atherosclerosis in patients with fatal stroke. Stroke. 2009;40:713–8. https://doi.org/10.1161/STROKEAHA.108.514349.

    Article  PubMed  Google Scholar 

  27. Labadzhyan A, Csiba L, Narula N, Zhou J, Narula J, Fisher M. Histopathologic evaluation of basilar artery atherosclerosis. J Neurol Sci. 2011;307:97–9. https://doi.org/10.1016/j.jns.2011.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Aoki S, Shirouzu I, Sasaki Y, Okubo T, Hayashi N, Machida T, et al. Enhancement of the intracranial arterial wall at MR imaging: relationship to cerebral atherosclerosis. Radiology. 1995;194:477–81. https://doi.org/10.1148/radiology.194.2.7824729.

    Article  CAS  PubMed  Google Scholar 

  29. Kerwin WS, Oikawa M, Yuan C, Jarvik GP, Hatsukami TS. MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med. 2008;59:507–14. https://doi.org/10.1002/mrm.21532.

    Article  CAS  PubMed  Google Scholar 

  30. Power S, Matouk C, Casaubon LK, Silver FL, Krings T, Mikulis DJ, et al. Vessel wall magnetic resonance imaging in acute ischemic stroke: effects of embolism and mechanical thrombectomy on the arterial wall. Stroke. 2014;45:2330–4. https://doi.org/10.1161/STROKEAHA.114.005618.

    Article  PubMed  Google Scholar 

  31. Astor BC, Sharrett AR, Coresh J, Chambless LE, Wasserman BA. Remodeling of carotid arteries detected with MR imaging: atherosclerosis risk in communities carotid MRI study. Radiology. 2010;256:879–86. https://doi.org/10.1148/radiol.10091162.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Babiarz LS, Astor B, Mohamed MA, Wasserman BA. Comparison of gadolinium-enhanced cardiovascular magnetic resonance angiography with high-resolution black blood cardiovascular magnetic resonance for assessing carotid artery stenosis. J Cardiovasc Magn Reson. 2007;9:63–70. https://doi.org/10.1080/10976640600843462.

    Article  PubMed  Google Scholar 

  33. Lee WJ, Choi HS, Jang J, Sung J, Kim T-W, Koo J, et al. Non-stenotic intracranial arteries have atherosclerotic changes in acute ischemic stroke patients: a 3T MRI study. Neuroradiology. 2015;57:1007–13. https://doi.org/10.1007/s00234-015-1566-9.

    Article  PubMed  Google Scholar 

  34. Kim TH, Choi JW, Roh HG, Moon W-J, Moon SG, Chun YI, et al. Atherosclerotic arterial wall change of non-stenotic intracranial arteries on high-resolution MRI at 3.0T: correlation with cerebrovascular risk factors and white matter hyperintensity. Clin Neurol Neurosurg. 2014;126:1–6. https://doi.org/10.1016/j.clineuro.2014.08.010.

    Article  PubMed  Google Scholar 

  35. Beausang-Linder M, Bill A. Cerebral circulation in acute arterial hypertension--protective effects of sympathetic nervous activity. Acta Physiol Scand. 1981;111:193–9. https://doi.org/10.1111/j.1748-1716.1981.tb06724.x.

    Article  CAS  PubMed  Google Scholar 

  36. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;26(49):2379–93. https://doi.org/10.1016/j.jacc.2007.02.059.

    Article  CAS  Google Scholar 

  37. Huang B, Yang W-Q, Liu X-T, Liu H-J, Li P-J, Lu H-K. Basilar artery atherosclerotic plaques distribution in symptomatic patients: a 3.0T high-resolution MRI study. Eur J Radiol. 2013;82:e199–203. https://doi.org/10.1016/j.ejrad.2012.10.031.

    Article  PubMed  Google Scholar 

  38. Xu W-H, Li M-L, Gao S, Ni J, Zhou L-X, Yao M, et al. Plaque distribution of stenotic middle cerebral artery and its clinical relevance. Stroke. 2011;42:2957–9. https://doi.org/10.1161/STROKEAHA.111.618132.

    Article  PubMed  Google Scholar 

  39. Jiang W-J, Yu W, Ma N, Du B, Lou X, Rasmussen PA. High resolution MRI guided endovascular intervention of basilar artery disease. J Neurointerv Surg. 2011;3:375–8. https://doi.org/10.1136/jnis.2010.004291.

    Article  PubMed  Google Scholar 

  40. Zeiler SR, Qiao Y, Pardo CA, Lim M, Wasserman BA. Vessel wall MRI for targeting biopsies of intracranial vasculitis. AJNR Am J Neuroradiol. 2018;39:2034–6. https://doi.org/10.3174/ajnr.A5801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hajj-Ali RA, Singhal AB, Benseler S, Molloy E, Calabrese LH. Primary angiitis of the CNS. Lancet Neurol. 2011;10:561–72. https://doi.org/10.1016/S1474-4422(11)70081-3.

    Article  PubMed  Google Scholar 

  42. Salvarani C, Brown RD, Calamia KT, Christianson TJH, Weigand SD, Miller DV, et al. Primary central nervous system vasculitis: analysis of 101 patients. Ann Neurol. 2007;62:442–51. https://doi.org/10.1002/ana.21226.

    Article  PubMed  Google Scholar 

  43. Mossa-Basha M, Shibata DK, Hallam DK, De Havenon A, Hippe DS, Becker KJ, et al. Added value of vessel wall MRI for differentiation of non-occlusive intracranial vasculopathies. Stroke. 2017;48:3026–33. https://doi.org/10.1161/STROKEAHA.117.018227.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Obusez EC, Hui F, Hajj-Ali RA, Cerejo R, Calabrese LH, Hammad T, et al. High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. AJNR Am J Neuroradiol. 2014;35:1527–32. https://doi.org/10.3174/ajnr.A3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Findlay JM, Weir BK, Kanamaru K, Espinosa F. Arterial wall changes in cerebral vasospasm. Neurosurgery. 1989;25:736–45. discussion 745-746

    Article  CAS  PubMed  Google Scholar 

  46. Mandell DM, Matouk CC, Farb RI, Krings T, Agid R, terBrugge K, et al. Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis: preliminary results. Stroke. 2012;43:860–2. https://doi.org/10.1161/STROKEAHA.111.626184.

    Article  PubMed  Google Scholar 

  47. Chen C-Y, Chen S-P, Fuh J-L, Lirng J-F, Chang F-C, Wang Y-F, et al. Vascular wall imaging in reversible cerebral vasoconstriction syndrome - a 3-T contrast-enhanced MRI study. J Headache Pain. 2018;19:74. https://doi.org/10.1186/s10194-018-0906-7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ducros A, Boukobza M, Porcher R, Sarov M, Valade D, Bousser M-G. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome. A prospective series of 67 patients. Brain. 2007;130:3091–101. https://doi.org/10.1093/brain/awm256.

    Article  PubMed  Google Scholar 

  49. Singhal AB, Hajj-Ali RA, Topcuoglu MA, Fok J, Bena J, Yang D, et al. Reversible cerebral vasoconstriction syndromes: analysis of 139 cases. Arch Neurol. 2011;68:1005–12. https://doi.org/10.1001/archneurol.2011.68.

    Article  PubMed  Google Scholar 

  50. Wang Y, Lou X, Li Y, Sui B, Sun S, Li C, et al. Imaging investigation of intracranial arterial dissecting aneurysms by using 3 T high-resolution MRI and DSA: from the interventional neuroradiologists’ view. Acta Neurochir. 2014;156:515–25. https://doi.org/10.1007/s00701-013-1989-1.

    Article  PubMed  Google Scholar 

  51. Kim T-W, Choi HS, Koo J, Jung SL, Ahn K-J, Kim B-S, et al. Intramural hematoma detection by susceptibility-weighted imaging in intracranial vertebral artery dissection. Cerebrovasc Dis. 2013;36:292–8. https://doi.org/10.1159/000354811.

    Article  PubMed  Google Scholar 

  52. Krings T, Piske RL, Lasjaunias PL. Intracranial arterial aneurysm vasculopathies: targeting the outer vessel wall. Neuroradiology. 2005;47:931–7. https://doi.org/10.1007/s00234-005-1438-9.

    Article  PubMed  Google Scholar 

  53. Park JK, Lee CS, Sim KB, Huh JS, Park JC. Imaging of the walls of saccular cerebral aneurysms with double inversion recovery black-blood sequence. J Magn Reson Imaging. 2009;30:1179–83. https://doi.org/10.1002/jmri.21942.

    Article  PubMed  Google Scholar 

  54. Kleinloog R, Korkmaz E, Zwanenburg JJM, Kuijf HJ, Visser F, Blankena R, et al. Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study. Neurosurgery. 2014;75:614–22 . discussion 622. https://doi.org/10.1227/NEU.000000000000055.

    Article  PubMed  Google Scholar 

  55. Scanarini M, Mingrino S, Giordano R, Baroni A. Histological and ultrastructural study of intracranial saccular aneurysmal wall. Acta Neurochir. 1978;43:171–82.

    Article  CAS  PubMed  Google Scholar 

  56. Nagahata S, Nagahata M, Obara M, Kondo R, Minagawa N, Sato S, et al. Wall enhancement of the intracranial aneurysms revealed by magnetic resonance vessel wall imaging using three-dimensional turbo spin-echo sequence with motion-sensitized driven-equilibrium: a sign of ruptured aneurysm? Clin Neuroradiol. 2016;26:277–83. https://doi.org/10.1007/s00062-014-0353-z.

    Article  CAS  PubMed  Google Scholar 

  57. Shimonaga K, Matsushige T, Ishii D, Sakamoto S, Hosogai M, Kawasumi T, et al. Clinicopathological insights from vessel wall imaging of unruptured intracranial aneurysms. Stroke. 2018;49:2516–9. https://doi.org/10.1161/STROKEAHA.118.021819.

    Article  PubMed  Google Scholar 

  58. Hudson Joseph S, Mario Z, Daichi N, Kung David K, Pascal J, Samaniego Edgar A, et al. Magnetic resonance vessel wall imaging in human intracranial aneurysms. Stroke. 2019;50:e1. https://doi.org/10.1161/STROKEAHA.118.023701.

    Article  Google Scholar 

  59. Matouk CC, Mandell DM, Günel M, Bulsara KR, Malhotra A, Hebert R, et al. Vessel wall magnetic resonance imaging identifies the site of rupture in patients with multiple intracranial aneurysms: proof of principle. Neurosurgery. 2013;72:492–6 . discussion 496. https://doi.org/10.1227/NEU.0b013e31827d1012.

    Article  PubMed  Google Scholar 

  60. Edjlali M, Gentric J-C, Régent-Rodriguez C, Trystram D, Hassen WB, Lion S, et al. Does aneurysmal wall enhancement on vessel wall MRI help to distinguish stable from unstable intracranial aneurysms? Stroke. 2014;45:3704–6. https://doi.org/10.1161/STROKEAHA.114.006626.

    Article  PubMed  Google Scholar 

  61. Edjlali M, Guédon A, Ben Hassen W, Boulouis G, Benzakoun J, Rodriguez-Régent C, et al. Circumferential thick enhancement at vessel wall MRI has high specificity for intracranial aneurysm instability. Radiology. 2018;289:181–7. https://doi.org/10.1148/radiol.2018172879.

    Article  PubMed  Google Scholar 

  62. Hartman JB, Watase H, Sun J, Hippe DS, Kim L, Levitt M, et al. Intracranial aneurysms at higher clinical risk for rupture demonstrate increased wall enhancement and thinning on multicontrast 3D vessel wall MRI. Br J Radiol. 2019; https://doi.org/10.1259/bjr.20180950.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang X, Zhu C, Leng Y, Degnan AJ, Lu J. Intracranial aneurysm wall enhancement associated with aneurysm rupture: a systematic review and meta-analysis. Acad Radiol. 2018; https://doi.org/10.1016/j.acra.2018.05.005.

    Article  PubMed  Google Scholar 

  64. Coutinho JM, Sacho RH, Schaafsma JD, Agid R, Krings T, Radovanovic I, et al. High-resolution vessel wall magnetic resonance imaging in angiogram-negative non-perimesencephalic subarachnoid hemorRHAGE. Clin Neuroradiol. 2017;27:175–83. https://doi.org/10.1007/s00062-015-0484-x.

    Article  CAS  PubMed  Google Scholar 

  65. Edjlali M, Roca P, Gentric J-C, Trystram D, Rodriguez-Régent C, Nataf F, et al. Advanced technologies applied to physiopathological analysis of central nervous system aneurysms and vascular malformations. Diagn Interv Imaging. 2014;95:1187–93. https://doi.org/10.1016/j.diii.2014.05.003.

    Article  CAS  PubMed  Google Scholar 

  66. Meng H, Tutino VM, Xiang J, Siddiqui A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 2014;35:1254–62. https://doi.org/10.3174/ajnr.A3558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ansari SA, Schnell S, Carroll T, Vakil P, Hurley MC, Wu C, et al. Intracranial 4D flow MRI: toward individualized assessment of arteriovenous malformation hemodynamics and treatment-induced changes. AJNR Am J Neuroradiol. 2013;34:1922–8. https://doi.org/10.3174/ajnr.A3537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wasserman BA, Lin W, Tarr RW, Haacke EM, Müller E. Cerebral arteriovenous malformations: flow quantitation by means of two-dimensional cardiac-gated phase-contrast MR imaging. Radiology. 1995;194:681–6. https://doi.org/10.1148/radiology.194.3.7862962.

    Article  CAS  PubMed  Google Scholar 

  69. Edjlali M, Roca P, Rabrait C, Trystram D, Rodriguez-Régent C, Johnson KM, et al. MR selective flow-tracking cartography: a postprocessing procedure applied to four-dimensional flow MR imaging for complete characterization of cranial dural arteriovenous fistulas. Radiology. 2014;270:261–8. https://doi.org/10.1148/radiol.13130507.

    Article  PubMed  Google Scholar 

  70. Kortman HGJ, Smit EJ, Oei MTH, Manniesing R, Prokop M, Meijer FJA. 4D-CTA in neurovascular disease: a review. AJNR Am J Neuroradiol. 2015;36:1026–33. https://doi.org/10.3174/ajnr.A4162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang H, Ye X, Gao X, Zhou S, Lin Z. The diagnosis of arteriovenous malformations by 4D-CTA: a clinical study. J Neuroradiol. 2014;41:117–23. https://doi.org/10.1016/j.neurad.2013.04.004.

    Article  PubMed  Google Scholar 

  72. Willems PWA, Taeshineetanakul P, Schenk B, Brouwer PA, Terbrugge KG, Krings T. The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations. Neuroradiology. 2012;54:123–31. https://doi.org/10.1007/s00234-011-0864-0.

    Article  PubMed  Google Scholar 

  73. Willems PWA, Brouwer PA, Barfett JJ, terBrugge KG, Krings T. Detection and classification of cranial dural arteriovenous fistulas using 4D-CT angiography: initial experience. AJNR Am J Neuroradiol. 2011;32:49–53. https://doi.org/10.3174/ajnr.A2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fujiwara H, Momoshima S, Akiyama T, Kuribayashi S. Whole-brain CT digital subtraction angiography of cerebral dural arteriovenous fistula using 320-detector row CT. Neuroradiology. 2013;55:837–43. https://doi.org/10.1007/s00234-013-1181-6.

    Article  PubMed  Google Scholar 

  75. Frölich AMJ, Wolff SL, Psychogios MN, Klotz E, Schramm R, Wasser K, et al. Time-resolved assessment of collateral flow using 4D CT angiography in large-vessel occlusion stroke. Eur Radiol. 2014;24:390–6. https://doi.org/10.1007/s00330-013-3024-6.

    Article  PubMed  Google Scholar 

  76. Frölich AMJ, Schrader D, Klotz E, Schramm R, Wasser K, Knauth M, et al. 4D CT angiography more closely defines intracranial thrombus burden than single-phase CT angiography. AJNR Am J Neuroradiol. 2013;34:1908–13. https://doi.org/10.3174/ajnr.A3533.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Frölich AMJ, Psychogios MN, Klotz E, Schramm R, Knauth M, Schramm P. Antegrade flow across incomplete vessel occlusions can be distinguished from retrograde collateral flow using 4-dimensional computed tomographic angiography. Stroke. 2012;43:2974–9. https://doi.org/10.1161/STROKEAHA.112.668889.

    Article  PubMed  Google Scholar 

  78. Tan IYL, Demchuk AM, Hopyan J, Zhang L, Gladstone D, Wong K, et al. CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol. 2009;30:525–31. https://doi.org/10.3174/ajnr.A1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsivgoulis G, Sharma VK, Lao AY, Malkoff MD, Alexandrov AV. Validation of transcranial Doppler with computed tomography angiography in acute cerebral ischemia. Stroke. 2007;38:1245–9. https://doi.org/10.1161/01.STR.0000259712.64772.85.

    Article  PubMed  Google Scholar 

  80. Brunser AM, Mansilla E, Hoppe A, Olavarría V, Sujima E, Lavados PM. The role of TCD in the evaluation of acute stroke. J Neuroimaging. 2016;26:420–5. https://doi.org/10.1111/jon.12334.

    Article  PubMed  Google Scholar 

  81. Kilburg C, McNally JS, de Havenon A, Taussky P, Kalani MYS, Park MS. Advanced imaging in acute ischemic stroke. Neurosurg Focus. 2017;42:E10. https://doi.org/10.3171/2017.1.FOCUS16503.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Alan Wasserman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yahyavi-Firouz-Abadi, N., Wasserman, B.A. (2020). Advanced Intracranial Vessel Wall Imaging and Future Directions. In: Yuan, C., Hatsukami, T., Mossa-Basha, M. (eds) Vessel Based Imaging Techniques . Springer, Cham. https://doi.org/10.1007/978-3-030-25249-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25249-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25248-9

  • Online ISBN: 978-3-030-25249-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics