Skip to main content

Evolution Under Antibiotic Treatments: Interplay Between Antibiotic Persistence, Tolerance, and Resistance

  • Chapter
  • First Online:
Persister Cells and Infectious Disease

Abstract

In this chapter, we describe the experimental evolution of antibiotic tolerance and persistence under antibiotic treatments and how these phenomena can speed up the subsequent evolution of resistance. The first two parts are dedicated to defining the difference between antibiotic resistance, tolerance, and persistence with qualitative definitions and quantitative metrics. The third part describes experimental observations of the evolution of tolerance and persistence under antibiotic treatments. The fourth part shows that tolerance and persistence speed up the evolution of antibiotic resistance. In each part, mathematical subsections can be skipped by the reader without losing the qualitative understanding of the effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann, M. (2015). A functional perspective on phenotypic heterogeneity in microorganisms. Nature Reviews. Microbiology, 13, 497–508.

    Article  CAS  PubMed  Google Scholar 

  • Audrain, B., et al. (2013). Induction of the Cpx envelope stress pathway contributes to Escherichia coli tolerance to antimicrobial peptides. Applied and Environmental Microbiology, 79, 7770–7779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistenceas a phenotypic switch. Science, 305, 1622–1625.

    Article  CAS  PubMed  Google Scholar 

  • Balaban, N. Q., et al. (2019). Definitions and guidelines for research on antibiotic persistence. Nature Reviews. Microbiology, 1, 441–448.

    Article  CAS  Google Scholar 

  • Baranyi, J., George, S. M., & Kutalik, Z. (2009). Parameter estimation for the distribution of single cell lag times. Journal of Theoretical Biology, 259, 24–30.

    Article  CAS  PubMed  Google Scholar 

  • Barry, A. L., et al. (1999). Methods for determining bactericidal activity of antimicrobial agents; approved guideline (Vol. 19, pp. 1–3). Wayne, PA: Clinical and Laboratory Standard Institute.

    Google Scholar 

  • Baym, M., et al. (2016). Spatiotemporal microbial evolution on antibiotic landscapes. Science, 353, 1147–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergkessel, M., Basta, D. W., & Newman, D. K. (2016). The physiology of growth arrest: Uniting molecular and environmental microbiology. Nature Reviews. Microbiology, 14, 549–562.

    Article  CAS  PubMed  Google Scholar 

  • Best, G. K., Best, N. H., & Koval, A. V. (1974). Evidence for participation of autolysins in bactericidal action of oxacillin on Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 6, 825–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bizzini, A., et al. (2010). A single mutation in enzyme I of the sugar phosphotransferase system confers penicillin tolerance to Streptococcus gordonii. Antimicrobial Agents and Chemotherapy, 54, 259–266.

    Article  CAS  PubMed  Google Scholar 

  • Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews. Microbiology, 13, 42–51.

    Article  CAS  PubMed  Google Scholar 

  • Brauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. (2016). Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews. Microbiology, 14, 320–330.

    Article  CAS  PubMed  Google Scholar 

  • Brauner, A., Shoresh, N., Fridman, O., & Balaban, N. Q. (2017). An experimental framework for quantifying bacterial tolerance. Biophysical Journal, 112, 2664–2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britt, N. S., et al. (2017). Relationship between vancomycin tolerance and clinical outcomes in Staphylococcus aureus bacteraemia. The Journal of Antimicrobial Chemotherapy, 72, 535–542.

    Article  CAS  PubMed  Google Scholar 

  • Dengler Haunreiter, V., et al. (2019). In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance. Nature Communications, 10, 1149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denny, A. E., Peterson, L. R., Gerding, D. N., & Hall, W. H. (1979). Serious staphylococcal infections with strains tolerant to bactericidal antibiotics. Archives of Internal Medicine, 139, 1026–1031.

    Article  CAS  PubMed  Google Scholar 

  • Dörr, T., Vulić, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, e1000317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du, D., et al. (2018). Multidrug efflux pumps: Structure, function and regulation. Nature Reviews. Microbiology, 16, 523–539.

    Article  CAS  PubMed  Google Scholar 

  • Eagle, H., & Musselman, A. D. (1948). The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. The Journal of Experimental Medicine, 88, 99–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Halfawy, O. M., & Valvano, M. A. (2015). Antimicrobial heteroresistance: An emerging field in need of clarity. Clinical Microbiology Reviews, 28, 191–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Entenza, J. M., Caldelari, I., Glauser, M. P., Francioli, P., & Moreillon, P. (1997). Importance of genotypic and phenotypic tolerance in the treatment of experimental endocarditis due to Streptococcus gordonii. The Journal of Infectious Diseases, 175, 70–76.

    Article  CAS  PubMed  Google Scholar 

  • EUCAST. (2019). EUCAST reading guide. The European Committee on Antimicrobial Susceptibility Testing.

    Google Scholar 

  • Fridman, O., Goldberg, A., Ronin, I., Shoresh, N., & Balaban, N. Q. (2014). Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature, 513, 418–421.

    Article  CAS  PubMed  Google Scholar 

  • Gefen, O., Chekol, B., Strahilevitz, J., & Balaban, N. Q. (2017). TDtest: Easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay. Scientific Reports, 7, 41284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez, A., et al. (2017). Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Molecular Cell, 68, 1147–1154.e3.

    Article  CAS  PubMed  Google Scholar 

  • Handwerger, S., & Tomasz, A. (1985). Antibiotic tolerance among clinical isolates of bacteria. Annual Review of Pharmacology and Toxicology, 25, 349–380.

    Article  CAS  PubMed  Google Scholar 

  • Helaine, S., et al. (2014). Internalization of salmonella by macrophages induces formation of nonreplicating persisters. Science, 343, 204–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honsa, E. S., et al. (2017). Rela mutant Enterococcus faecium with multiantibiotic tolerance arising in an immunocompromised host. MBio, 8, 1–12.

    Article  Google Scholar 

  • Huang, G.-R., Saakian, D. B., & Hu, C.-K. (2018). Accurate analytic solution of chemical master equations for gene regulation networks in a single cell. Physical Review E, 97, 012412.

    Article  CAS  PubMed  Google Scholar 

  • Jacoby, G. A. (2009). AmpC β-lactamases. Clinical Microbiology Reviews, 22, 161–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jõers, A., Kaldalu, N., Tenson, T., & Jo, A. (2010). The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. Journal of Bacteriology, 192, 3379–3384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson, P. J. T., Levin, B. R., Levin, B. R., Li, L., & Karger, B. (2013). Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genetics, 9, e1003123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce, L. F., Downes, J., Stockman, K., & Andrew, J. H. (1992). Comparison of five methods, including the PDM Epsilometer test (E test), for antimicrobial susceptibility testing of Pseudomonas aeruginosa. Journal of Clinical Microbiology, 30, 2709–2713.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin, B. R., Concepción-Acevedo, J., & Udekwu, K. I. (2014). Persistence: A copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics. Current Opinion in Microbiology, 21, 18–21.

    Article  CAS  PubMed  Google Scholar 

  • Levin, B. R., & Udekwu, K. I. (2010). Population dynamics of antibiotic treatment: A mathematical model and hypotheses for time-kill and continuous-culture experiments. Antimicrobial Agents and Chemotherapy, 54, 3414–3426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin-Reisman, I., et al. (2010). Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. Nature Methods, 7, 737–739.

    Article  CAS  PubMed  Google Scholar 

  • Levin-Reisman, I., et al. (2017). Antibiotic tolerance facilitates the evolution of resistance. Science, 355, 826–830.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews. Microbiology, 5, 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Mechler, L., et al. (2015). A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 59, 5366–5376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meylan, S., Andrews, I. W., & Collins, J. J. (2018). Targeting antibiotic tolerance, pathogen by pathogen. Cell, 172, 1228–1238.

    Article  CAS  PubMed  Google Scholar 

  • Michiels, J. E., Van den Bergh, B., Verstraeten, N., & Michiels, J. (2016). Molecular mechanisms and clinical implications of bacterial persistence. Drug Resistance Updates, 29, 76–89.

    Article  PubMed  Google Scholar 

  • Monod, J. (1949). The growth of bacterial cultures. Annual Review of Microbiology, 3, 371–394.

    Article  CAS  Google Scholar 

  • Moreillon, P., Tomasz, A., & Tomasz, A. (1988). Penicillin resistance and defective lysis in clinical isolates of pneumococci: Evidence for two kinds of antibiotic pressure operating in the clinical environment. The Journal of Infectious Diseases, 157, 1150–1157.

    Article  CAS  PubMed  Google Scholar 

  • Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulcahy, L. R., Burns, J. L., Lory, S., & Lewis, K. (2010). Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. Journal of Bacteriology, 192, 6191–6199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwangi, M. M., et al. (2007). Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proceedings of the National Academy of Sciences, 104, 9451–9456.

    Article  CAS  Google Scholar 

  • Nemeth, J., Oesch, G., & Kuster, S. P. (2015). Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: Systematic review and meta-analysis. The Journal of Antimicrobial Chemotherapy, 70, 382–395.

    Article  CAS  PubMed  Google Scholar 

  • Nicoloff, H., Hjort, K., Levin, B. R., & Andersson, D. I. (2019). The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nature Microbiology, 4, 504.

    Article  CAS  PubMed  Google Scholar 

  • Pearl, S., Gabay, C., Kishony, R., Oppenheim, A., & Balaban, N. Q. (2008). Nongenetic individuality in the host–phage interaction. PLoS Biology, 6, e120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radzikowski, J. L., Schramke, H., & Heinemann, M. (2017). Bacterial persistence from a system-level perspective. Current Opinion in Biotechnology, 46, 98–105.

    Article  CAS  PubMed  Google Scholar 

  • Rahal, J. J., Chan, Y. K., & Johnson, G. (1986). Relationship of staphylococcal tolerance, teichoic acid antibody, and serum bactericidal activity to therapeutic outcome in Staphylococcus aureus bacteremia. The American Journal of Medicine, 81, 43–52.

    Article  PubMed  Google Scholar 

  • Roberts, J. A., et al. (2014). DALI: Defining antibiotic levels in intensive care unit patients: Are current ß-lactam antibiotic doses sufficient for critically ill patients? Clinical Infectious Diseases, 58, 1072–1083.

    Article  CAS  PubMed  Google Scholar 

  • Sabath, L. D., Laverdiere, M., Wheeler, N., Blazevic, D., & Wilkinson, B. J. (1977). A new type of penicillin resistance of Staphylococcus aureus. Lancet, 309, 443–447.

    Article  Google Scholar 

  • Scherrer, R., & Moyed, H. S. (1988). Conditional impairment of cell division and altered lethality in hipA mutants of Escherichia coli K-12. Journal of Bacteriology, 170, 3321–3326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieradzki, K., Leski, T., Dick, J., Borio, L., & Tomasz, A. (2003). Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: Multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. Journal of Clinical Microbiology, 41, 1687–1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, S., Berg, O. G., Roth, J. R., & Andersson, D. I. (2009). Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics, 182, 1183–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasz, A. (1979). Escherichia coli mutants tolerant. Journal of Bacteriology, 140, 955–963.

    PubMed  PubMed Central  Google Scholar 

  • Tomasz, A. (1985). Antibiotic tolerance among clinical isolates of bacteria. Antimicrobial Agents and Chemotherapy, 7, 368–386.

    Google Scholar 

  • Toprak, E., et al. (2012). Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature Genetics, 44, 101–105.

    Article  CAS  Google Scholar 

  • Tsimring, L. S. (2014). Noise in biology. Reports on Progress in Physics, 77, 026601.

    Article  PubMed  CAS  Google Scholar 

  • Van den Bergh, B., et al. (2016). Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nature Microbiology, 1, 16020.

    Article  CAS  PubMed  Google Scholar 

  • Vega, N. M., Allison, K. R., Khalil, A. S., & Collins, J. J. (2012). Signaling-mediated bacterial persister formation. Nature Chemical Biology, 8, 431–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfson, J. S., Hooper, D. C., McHugh, G. L., Bozza, M. A., & Swartz, M. N. (1990). Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrobial Agents and Chemotherapy, 34, 1938–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhi, J., Nightingale, C. H., & Quintiliani, R. (1986). A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions. Journal of Pharmaceutical Sciences, 75, 1063–1067.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, K., George, S. M., Li, P. L., & Baranyi, J. (2012). Effect of periodic fluctuation in the osmotic environment on the adaptation of Salmonella. Food Microbiology, 30, 298–302.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Q. Balaban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balaban, N.Q., Liu, J. (2019). Evolution Under Antibiotic Treatments: Interplay Between Antibiotic Persistence, Tolerance, and Resistance. In: Lewis, K. (eds) Persister Cells and Infectious Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-25241-0_1

Download citation

Publish with us

Policies and ethics