Skip to main content

Commercial Microalgal Cultivation Systems

  • Chapter
  • First Online:
Grand Challenges in Algae Biotechnology

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB))

Abstract

Commercial cultivation systems designed to produce microalgal biomass phototrophically (photobioreactors, PBRs) exist in many forms (e.g., open vs. closed, tubular vs. panels, vertical vs. horizontal). Independent of what they look like, their function is the same: to expose the largest fraction of the microalgal cells to optimal production conditions and to do it as economically as possible! Those conditions are dependent both on the target products and on the producing organism. In this chapter, the authors explore different photobioreactor types and how they may cope with changing growth conditions, especially outdoors. It is proposed that a simple productivity model can help to evaluate different photobioreactors and different production strategies. Finally, the authors believe that both open and closed PBRs, including new designs, will enable to close the gap between the reality and the potential of microalgae as economical providers of many products and services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acien Fernandez FG, Fernandez Sevilla JM, Molina Grima E (2012) Principles of photobioreactor design. In: Posten C, Walter C (eds) Microalgal biotechnology: potential and production. De Gruyter, Berlin, pp 151–180

    Google Scholar 

  • Arbib Z, Ruiz J, Alvarez-Diaz P et al (2013) Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol Eng 52:143–153

    Article  Google Scholar 

  • Barclay W, Weaver C, Metz J et al (2010) Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C (eds) Single cell oils, 2nd edn. Elsevier, Amsterdam, pp 75–96

    Chapter  Google Scholar 

  • Belay A (1997) Mass culture of Spirulina outdoors – The Earthrise experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell biology and biotechnology. Taylor & Francis, London, pp 131–158

    Google Scholar 

  • Blanken W, Janssen MGJ, Cuaresma M et al (2014) Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng 111(12):2436–2445

    Article  CAS  PubMed  Google Scholar 

  • Blankley WF (1973) Toxic and inhibitory materials associated with with culturing. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 207–229

    Google Scholar 

  • Borowitzka MA, Vonshak A (2017) Scaling up microalgal cultures to commercial scale. Eur J Phycol 52(4):407–418

    Article  CAS  Google Scholar 

  • Burgess G, Fernandez-Velasio JG, Lovegrove K (2007) Materials, geometry, net energy ratio of tubular photobioreactor for microalgal hydrogen production. Int J Hydrogen Energy 32(9):1225–1234

    Article  CAS  Google Scholar 

  • Chang JS, Show PL, Ling TC et al (2017) Photobioreactors. In: Larroche C, Sanroman M, Du G et al (eds) Current developments in biotechnology and bioengineering: bioprocesses, bioreactors and controls. Elsevier, Amsterdam, pp 313–352

    Chapter  Google Scholar 

  • Chisti Y (2012) Raceway-based production of algal crude oil. In: Posten C, Walter C (eds) Microalgal biotechnology: potential and production. De Gruyter, Berlin, pp 113–146

    Google Scholar 

  • Chisti Y (2016) Large-scale production of algal biomass: raceway ponds. In: Bux F, Chity Y (eds) Algae biotechnology. Green energy and technology. Springer, Berlin, pp 21–40

    Chapter  Google Scholar 

  • De Vree JH, Bosma R, Janssen M et al (2015) Comparison of four outdoor pilot-scale photobioreactors. Biotechnol Biofuels 8:215–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dodge C, Peers G, McCarren J et al (2016) Method of illuminating algae for algae growth. US Patent # 9329131

    Google Scholar 

  • Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21(1):111–117

    Article  CAS  Google Scholar 

  • Edmundson SJ, Huesemann MH (2015) The dark side of algae cultivation: characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp. Algal Res 12:470–476

    Article  Google Scholar 

  • Endres CH, Roth A, Bruck TB (2018) Modeling microalgae productivity in industrial scale vertical flat panel photobioreactors. Environ Sci Technol 52(9):5490–5498

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Kong B, Dennis Vigil R (2018) Simulation of algal photobioreactors: recent developments and challenges. Biotechnol Lett 40(9-10):1311–1327

    Article  CAS  PubMed  Google Scholar 

  • Goldman JC, Porcella DB, Middlebrooks JE et al (1971) The effect of carbon on algal growth - its relationship to eutrophication. Reports. Paper 462. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1461&context=water rep

  • Grewe CB, Broneske J (2015) Development of photobioreactors, cultivation strategies and algae-based products. Algae Eur, Lisbon

    Google Scholar 

  • Grewe CB, Pulz O (2012) The biotechnology of cyanobacteria. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Berlin, pp 707–739

    Chapter  Google Scholar 

  • Gross M, Henry W, Michael C et al (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Biores Technol 150:195–201

    Article  CAS  Google Scholar 

  • Gross M, Mascarenhas V, Wen Z (2015) Evaluating algal growth performance and water use efficiency of pilot-scale Revolving Algal Biofilm (RAB) culture systems. Biotechnol Bioeng 112(10):2040–2050

    Article  CAS  PubMed  Google Scholar 

  • Han F, Wang W, Li Y et al (2013) Changes of biomass, lipid content and fatty acids composition under a light–dark cyclic culture of Chlorella pyrenoidosa in response to different temperature. Biores Technol 132:182–189

    Article  CAS  Google Scholar 

  • Huang Q, Jiang F, Wang L et al (2017) Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3:318–329

    Article  Google Scholar 

  • Huesemann M, Crowe B, Waller P et al (2016) A validated model to predict microalgal growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures. Algal Res 13:195–206

    Article  Google Scholar 

  • Hussain I, Hamid H (2004) Plastics in agriculture. In: Andrady AL (ed) Plastics and the environment. Wiley, New York, pp 185–209

    Chapter  Google Scholar 

  • Johnson TJ, Katuwal S, Anderson GA et al (2018) Photobioreactor cultivation strategies for microalgae and cyanobacteria. Biotechnol Prog 34(4):811–827

    Article  CAS  PubMed  Google Scholar 

  • Karam AL, de los Reyes FL, Ducoste JJ (2018) Development of photochemical microsensors for evaluating photosynthetic light dose distributions in microalgal photobioreactors. Environ Sci Technol 52(21):12538–12545

    Article  CAS  PubMed  Google Scholar 

  • Kerner M, Gebken T, Sundarrao I et al (2019) Development of a control system to cover the demand for heat in a building with algae production in a bioenergy facade. Energy and Buildings 184:65–71

    Article  Google Scholar 

  • Leyland B, Leu S, Boussiba S (2017) Are Traustochytrids algae? Fungal Biol. 121(10):835–840

    Article  PubMed  Google Scholar 

  • Naumann T, Cebi S, Podola B et al (2013) Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol 25(5):1413–1420

    Article  CAS  Google Scholar 

  • Oeschger L, Posten C (2012) Construction and assessment parameters of photobioreactors. In: Posten C, Walter C (eds) Microalgal biotechnology: potential and production. De Gruyter, pp 225–236

    Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    Article  CAS  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    Article  CAS  PubMed  Google Scholar 

  • Olaizola M, Brown RC, Orchard ED (2018) Present and future economic and environmental impacts of microalgal technology. In: Malcata FX, Sousa-Pinto I, Guedes AC (eds) Marine algae – features and applications. CRC, Boca Raton, pp 300–329

    Google Scholar 

  • Olaizola M, Davenport J, Coard J et al (2019) Photobioreactor for contained microorganism cultivation. WO 2019/113116 A1

    Google Scholar 

  • Olivieri G, Salatino P, Marzochella A (2014) Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biotechnol 89(2):178–195

    Article  CAS  Google Scholar 

  • Perner-Nochta I, Posten C (2007) Simulations of light intensity variation in photobioreactors. J Biotechnol 131(3):276–285

    Article  CAS  PubMed  Google Scholar 

  • Raso S, van Genugten B, Vermue MH et al (2012) Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. J Appl Phycol 24:863–871

    Article  CAS  PubMed  Google Scholar 

  • Rodolfi et al (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Schmidt T, Nguyen M-K, Lakatos M (2017) Fassadenintegrierte Bioreaktorsysteme. Fassade 2:24–26

    Google Scholar 

  • Schreiber C, Behrendt D, Huber G et al (2017) Growth of algal biomass in laboratory and in large-scale algal photobioreactors in the temperate climate of western Germany. Bioresour Technol 234:140–149

    Article  CAS  PubMed  Google Scholar 

  • Schultze LKP, Simon M-V, Li T et al (2015) High light and carbon dioxide optimize surface productivity in a twin-Layer biofilm photobioreactor. Algal Res 8:37–44

    Article  Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production - a review. Renew Sustain Energy Rev 16:2347–2353

    Article  CAS  Google Scholar 

  • Sivakaminathan S, Hankamer B, Wolf J et al (2018) High throughput optimisation of light-driven microalgal biotechnologies. Sci Rep 8:11687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephens E, Ross IL, Hankamer B (2013) Expanding the microalgal industry – continuing controversy or compelling case? Curr Opin Chem Biol 17(3):444–452

    Article  CAS  PubMed  Google Scholar 

  • Torzillo G, Chini Zittelli G (2015) Tubular photobioreactors. In: Prokop A (ed) Algal biorefineries. Springer, Berlin, pp 187–212

    Chapter  Google Scholar 

  • Torzillo G et al (1993) A two-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnol Bioeng 42(7):891–898

    Article  CAS  PubMed  Google Scholar 

  • Tredici M, Bassi N, Prussi M et al (2015) Energy balance of algal biomass production in a 1 ha “Green Wall Panel” plant: how to produce algal biomass in a closed reactor achieving a high net energy ratio. Appl Energy 154:1103–1111

    Article  Google Scholar 

  • Vonshak A, Torzillo G, Tomaseli L (1994) Use of chlorophyll fluorescence to estimate the effect of photoinhibition in outdoor cultures of Spirulina platensis. J Appl Phycol 6:31–34

    Article  Google Scholar 

  • Vonshak A, Torzillo G, Masojidek J et al (2001) Sub-optimal morning temperature induces photoinhibition in dense culture of the alga Monodus subterraneus (Eustigmatphytoa). Plant Cell Environ 24:1113–1118

    Article  Google Scholar 

  • Wilson MH, Groppo J, Grubbs T et al (2017) Cyclic photobioreactor and method for biofilm control. US2017/0355942 A1

    Google Scholar 

  • Wintersteller F (2018) Think outside the pond. Lecture, Innovationsforum Algae Food, 6 Aug 2018, Magdeburg, Germany

    Google Scholar 

  • Zeriouh O, Reinoso-Moreno JV, Lopez-Rosales L et al (2017) Biofouling in photobioreactors for marine microalgae. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2017.1299681

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Olaizola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olaizola, M., Grewe, C. (2019). Commercial Microalgal Cultivation Systems. In: Hallmann, A., Rampelotto, P. (eds) Grand Challenges in Algae Biotechnology. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-25233-5_1

Download citation

Publish with us

Policies and ethics