Skip to main content

Infrastructure in Assessing Disaster-Relief Agents in the RoboCupRescue Simulation

  • Chapter
  • First Online:
Computational Science/Intelligence and Applied Informatics (CSII 2019)

Abstract

The RoboCupRescue Simulation  project has been implemented as one of the responses to recent large-scale natural disasters. In particular, the project provides a platform for assessing disaster-relief agents and simulations. However, its research evolution is limited because all agents’ programs must be developed by each researcher and the experimental operations are complex. To address these problems, we propose a combination of an agent development framework and experiment management software in this study as infrastructures in assessing disaster-relief agents in the RoboCupRescue Simulation. We have provided those elements separately; however, it becomes possible to easily carry out experiments that have flexible configuration by combining two elements. In the evaluation, a combinatorial experiment as a case study confirms the effectiveness of the environment and shows that the environment can contribute to future disaster response research that utilizes a multi-agent simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akın, H.L., Aşık, O.: Robocup 2017 rescue simulation league team description RoboAKUT (turkey). http://roborescue.sf.net/data/2017-RSL/agent/rsl17-tdp-agent-RoboAKUT.pdf (2017). Accessed 10 Feb 2019

  2. Akin, H.L., Ito, N., Jacoff, A., Kleiner, A., Pellenz, J., Visser, A.: Robocup rescue robot and simulation leagues. AI Magazine 34(1), 78–86 (2013). URL http://dblp.uni-trier.de/db/journals/aim/aim34.html#AkinIJKPV13

    Article  Google Scholar 

  3. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon, W.: Rt-middleware: distributed component middleware for rt (robot technology). In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3933–3938 (2005). https://doi.org/10.1109/IROS.2005.1545521

  4. Ardestani, P., Taherian, M., MohammadAliZadeh, P., Nikoo, E.J.: Robocup rescue 2017- agent simulation League team description paper MRL (iran). http://roborescue.sf.net/data/2017-RSL/agent/rsl17-tdp-agent-MRL.pdf (2017). Accessed 10 Feb 2019

  5. Castro, S.: Machine learning to the rescue!. https://blogs.mathworks.com/racing-lounge/2018/07/04/machine-learning-to-the-rescue/ (2018). Accessed 10 Feb 2019

  6. ECMA International: Standard ecma-404 2st edition (the JSON data interchange syntax). https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf (2017). Accessed 10 Feb 2019

  7. Faraji, F., Nardin, L.G., Modaresi, A., Helal, D., Iwata, K., Ito, N.: Robocup rescue simulation league agent 2017 competition rules and setup. http://roborescue.sourceforge.net/web/2018/downloads/rules2017.pdf. Accessed 10 Feb 2019

  8. Ghahramanpour, M., Absalan, A., Kandeh, A.: Robocup 2017 rescue simulation league team description aura (iran). http://roborescue.sf.net/data/2017-RSL/agent/rsl17-tdp-agent-Aura.pdf (2017). Accessed 10 Feb 2019

  9. Kitano, H., Tadokoro, S.: Robocup rescue: a grand challenge for multiagent and intelligent systems. AI Mag. 22(1), 39 (2001)

    Google Scholar 

  10. MathWorks, Inc.: Matlab overview. https://www.mathworks.com/products/matlab.html. Accessed 10 Feb 2019

  11. Murase, Y., Uchitane, T., Ito, N.: A tool for parameter-space explorations. Phys. Procedia 57, 73–76 (2014). https://doi.org/10.1016/j.phpro.2014.08.134

    Article  Google Scholar 

  12. National Institute of Advanced Industrial Science and Technology: Openrtm-aist. http://www.openrtm.org/ (2019). Accessed 10 Feb 2019

  13. Obashi, D., Hayashi, T., Iwata, K., Ito, N.: An implementation of communication library among heterogenous agents naito-rescue 2013(japan). In: RoboCup 2013 Eindhoven (2013)

    Google Scholar 

  14. Ohta, T., Toriumi, F.: Robocuprescue2011 rescue simulation league team description. In: RoboCup 2011 Istanbul (2011)

    Google Scholar 

  15. Qian, C.: Robocup 2017 rescue simulation league team description SEU-UniRobot (P.R.China).http://roborescue.sf.net/data/2017-RSL/agent/rsl17-tdp-agent-SEU-UniRobot.pdf (2017). Accessed 10 Feb 2019

  16. RoboCupRescue Simulation League 2017 Committee: Robocup 2017 agent simulation results. https://rescuesim.robocup.org/2017-nagoya-agent-results/ (2017). Accessed 10 Feb 2019

  17. RoboCupRescue Simulation League Committee: Robocuprescue simulation. http://rescuesim.robocup.org/. Accessed 10 Feb 2019

  18. Skinner, C., Ramchurn, S.: The robocup rescue simulation platform. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: Volume 1 - Volume 1, AAMAS ’10, pp. 1647–1648. International Foundation for Autonomous Agents and Multiagent Systems (2010)

    Google Scholar 

  19. Takami, S., Onishi, M., Iwata, K., Ito, N., Murase, Y., Uchitane, T.: An environment for combinatorial experiments in a multi-agent simulation for disaster response. In: PRIMA 2018: Principles and Practice of Multi-Agent Systems - 21st International Conference, Tokyo, Japan, 29 Oct 29–2 Nov 2018, Proceedings, pp. 646–654 (2018). https://doi.org/10.1007/978-3-030-03098-8_52

    Google Scholar 

  20. Takami, S., Takayanagi, K., Jaishy, S., Ito, N., Iwata, K.: Agent-development framework based on modular structure to research disaster-relief activities. IJSI 6(4), 1–15 (2018). https://doi.org/10.4018/IJSI.2018100101

    Article  Google Scholar 

  21. Visser, A., Ito, N., Kleiner, A.: Robocup rescue simulation innovation strategy. In: RoboCup 2014: Robot World Cup XVIII, pp. 661–672 (2015). https://doi.org/10.1007/978-3-319-18615-3_54

    Chapter  Google Scholar 

  22. Zhang, P., Kang, T., Jiang, F., Peng, J., Zhang, X.: Robocup 2017 rescue simulation league team description CSU_yunlu (china). http://roborescue.sf.net/data/2017-RSL/agent/rsl17-tdp-agent-CSU_Yunlu.pdf (2017). Accessed 10 Feb 2019

Download references

Acknowledgements

This work was partially supported by MEXT Post-K project “Studies of multi-level spatiotemporal simulation of socioeconomic phenomena”. This work was supported by JSPS KAKENHI Grant Number JP16K00310 and JP17K00317. The authors would like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunki Takami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takami, S. et al. (2020). Infrastructure in Assessing Disaster-Relief Agents in the RoboCupRescue Simulation. In: Lee, R. (eds) Computational Science/Intelligence and Applied Informatics. CSII 2019. Studies in Computational Intelligence, vol 848. Springer, Cham. https://doi.org/10.1007/978-3-030-25225-0_10

Download citation

Publish with us

Policies and ethics