Skip to main content

Preprocessing with Contrast Enhancement Methods in Bone Age Assessment

  • Chapter
  • First Online:
Computer and Information Science (ICIS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 849))

Included in the following conference series:

Abstract

Bone age assessment (BAA) using radiological x-rays of the left-hand wrist is important in pediatric endocrinology to correctly assess growth and pubertal maturation.  To identify the age, the most commonly used technique is bone age assessment.  The bone age is the most commonly used criteria in age and growth disorder. There are two main methods for bone age estimation such as Tanner & Whitehouse (TW) method and Greulich & Pyle (GP) method. Tanner & Whitehouse (TW) method is a score assigning method while Greulich & Pyle (GP) is an atlas matching method. The objective of this research is to improve the accuracy of the automated bone age estimation. To improve the robustness and accuracy of this system, image preprocessing techniques are also necessary. Bone age assessment can affect the accuracy in segmentation because of poor contrast, noise, and various hand positions. Preprocessing steps of this system include background removal, radiological marker removal, image enhancement, and hand rotation methods. In this paper, we use the Contrast Limited Adaptive Histogram Equalization (CLAHE) method to enhance the contrast of the hand bone radiograph. This method enhances the hand radiograph in which the background and body have more brightness. The advantage of CLAHE is to prevent the over-amplification of noise, it is able to increase contrast. In this paper, we tested contrast enhancement techniques such as Contrast Limited Adaptive Histogram Equalization (CLAHE), Histogram Equalization (HE) and Power Law Transform (PLT) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Adaptive_histogram_equalization.

  2. 2.

    https://en.wikipedia.org/wiki/Adaptive_histogram_equalization.

  3. 3.

    https://en.wikipedia.org/wiki/Bone_age.

References

  1. Dewangan, T., Siddiqui, M.A., Bhiali, R.C.E.T.: Analysis of contrast enhancement method using modified dynamic histogram equalization

    Google Scholar 

  2. Thangam, P., Mahendiran, T.V., Thanushkodi, K.: Skeletal bone age assessment-research directions. J. Eng. Sci. Technol. Rev. 5(1) (2012)

    Google Scholar 

  3. Lynnerup, N., Frohlich, B., Thomsen, J.L.: Assessment of age at death by microscopy: unbiased quantification of secondary osteons in femoral cross sections. Forensic Sci. Int. 159, S100–S103 (2006)

    Article  Google Scholar 

  4. Warren, M.W., Smith, K.R., Stubblefield, P.R., Martin, S.S., Walsh-Haney, H.A.: Use of radiographic atlases in a mass fatality. J. Forensic Sci. 45(2), 467–470 (2000)

    Article  Google Scholar 

  5. Spencer, R.P., Sami, S., Karimeddini, M., Sziklas, J.J., Rosenberg, R.: Role of bone scans in assessment of skeletal age. Int. J. Nuclear Med. Biol. 8(1), 33–38 (1981)

    Article  Google Scholar 

  6. Zhang, A., Gertych, A., Liu, B.J.: Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones. Comput. Med. Imaging Graph. 31(4–5), 299–310 (2007)

    Article  Google Scholar 

  7. Thangam, P., Thanushkodi, K.: Skeletal bone age assessment from epiphysis/metaphysis of phalanges using Hausdorff distance. Scientific Research and Essays 7(28), 2495–2503 (2012)

    Article  Google Scholar 

  8. Güraksin, G.E., Uğuz, H., Baykan, Ö.K.: Bone age determination in young children (newborn to 6 years old) using support vector machines. Turkish J. Electr. Eng. Comput. Sci. 24(3), 1693–1708 (2016)

    Article  Google Scholar 

  9. Choi, J.A., Kim, Y.C., Min, S.J., Khil, E.K.: A simple method for bone age assessment: the capitohamate planimetry. Eur. Radiol. 28(6), 2299–2307 (2018)

    Article  Google Scholar 

  10. McNitt-Gray, M.F., Pietka, E., Huang, H.K.: Image preprocessing for a picture archiving and communication system. Investig. Radiol. 27(7), 529–535 (1992)

    Article  Google Scholar 

  11. Gertych, A., Zhang, A., Sayre, J., Pospiech-Kurkowska, S., Huang, H.K.: Bone age assessment of children using a digital hand atlas. Comput. Med. Imaging Graph. 31(4–5), 322–331 (2007)

    Article  Google Scholar 

  12. Liu, J., Qi, J., Liu, Z., Ning, Q., Luo, X.: Automatic bone age assessment based on intelligent algorithms and comparison with TW3 method. Comput. Med. Imaging Graph. 32(8), 678–684 (2008)

    Article  Google Scholar 

  13. Pietka, E., Kaabi, L., Kuo, M.L., Huang, H.K.: Feature extraction in carpal-bone analysis. IEEE Trans. Med. Imaging 12(1), 44–49 (1993)

    Article  Google Scholar 

  14. Seok, J., Hyun, B., Kasa-Vubu, J., Girard, A.: Automated classification system for bone age X-ray images. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 208–213. IEEE (2012)

    Google Scholar 

  15. Spampinato, C., Palazzo, S., Giordano, D., Aldinucci, M., Leonardi, R.: Deep learning for automated skeletal bone age assessment in X-ray images. Med. Image Anal. 36, 41–51 (2017)

    Article  Google Scholar 

  16. Giordano, D., Kavasidis, I., Spampinato, C.: Modeling skeletal bone development with hidden Markov models. Comput. Methods Programs Biomed. 124, 138–147 (2016)

    Article  Google Scholar 

  17. Giordano, D., Spampinato, C., Scarciofalo, G., Leonardi, R.: An automatic system for skeletal bone age measurement by robust processing of carpal and epiphysial/metaphysial bones. IEEE Trans. Instrum. Meas. 59(10), 2539–2553 (2010)

    Article  Google Scholar 

  18. Maitra, I.K., Nag, S., Bandyopadhyay, S.K.: Accurate breast contour detection algorithms in digital mammogram. Int. J. Comput. Appl. 25(5), 1–13 (2011)

    Google Scholar 

  19. Mansourvar, M., Ismail, M.A., Herawan, T., Gopal Raj, R., Abdul Kareem, S. and Nasaruddin, F.H.: Automated bone age assessment: motivation, taxonomies, and challenges. Comput. Math. Methods Med. (2013)

    Google Scholar 

  20. Giordano, D., Spampinato, C., Scarciofalo, G., Leonardi, R.: Automatic skeletal bone age assessment by integrating EMROI and CROI processing. In: 2009 IEEE International Workshop on Medical Measurements and Applications, pp. 141–145. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aye Aye Aung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aye Aye Aung, Zin Mar Win (2020). Preprocessing with Contrast Enhancement Methods in Bone Age Assessment. In: Lee, R. (eds) Computer and Information Science. ICIS 2019. Studies in Computational Intelligence, vol 849. Springer, Cham. https://doi.org/10.1007/978-3-030-25213-7_3

Download citation

Publish with us

Policies and ethics