Skip to main content

Thermal Fracture of Advanced Materials Based on Fourier Heat Conduction

  • Chapter
  • First Online:
Advanced Thermal Stress Analysis of Smart Materials and Structures

Part of the book series: Structural Integrity ((STIN,volume 10))

  • 658 Accesses

Abstract

In this chapter, we introduce a so-called extended displacement discontinuity approach to deal with three-dimensional (3D) thermoelastic plane crack problems in advanced materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sih GC (1962) On the singular character of thermal stress near a crack tip. J Appl Mech 29:587–589

    Article  MATH  Google Scholar 

  2. Chen WH, Ting K (1985) Finite element analysis of mixed-mode thermoelastic fracture problems. Nucl Eng Des 90:55–65

    Article  Google Scholar 

  3. Brown EJ, Erdogan F (1968) Thermal stresses in bonded materials containing cuts on the interface. Int J Eng Sci 6:517–529

    Article  Google Scholar 

  4. Herrmann K, Braun H, Kemeny P (1979) Comparison of experimental and numerical investigations concerning thermal cracking of dissimilar materials. Int J Fract 15:187–190

    Article  Google Scholar 

  5. Herrmann K, Grebner H (1982) Curved thermal crack growth in a bounded brittle two-phase solid. Int J Fract 19:69–74

    Article  Google Scholar 

  6. Martin-Moran CJ, Barber JR, Comninou M (1983) The penny-shaped interface crack with heat flow Part 1: perfect contact. ASME J Appl Mech 50:29–36

    Article  MathSciNet  MATH  Google Scholar 

  7. Barber JR, Comninou M (1983) The penny-shaped interface crack with heat flow part 2: imperfect contact. J Appl Mech 50:770–776

    Article  MATH  Google Scholar 

  8. Takakuda K, Aoyagi K, Shibuya T, Koizumi T (1984) Steady state thermal stresses in a bonded dissimilar medium with an external crack on the interface. JSME 27:2643–2650

    Article  Google Scholar 

  9. Yuuki R, Cho SB (1989) Efficient boundary element analysis of stress intensity factors for interface cracks in dissimilar materials. Eng Fract Mech 34:179–188

    Article  Google Scholar 

  10. Lee KY, Shul CW (1991) Determination of thermal stress intensity factors for an interface crack under vertical uniform heat flow. Eng Fract Mech 40(6):1067–1074

    Article  Google Scholar 

  11. Munz D, Yang YY (1992) Stress singularities at the interface in bonded dissimilar materials under mechanical and thermal loading. J Appl Mech 59:857–861

    Article  Google Scholar 

  12. Chao CK, Chang RC (1994) Analytical solutions and numerical examples for thermoelastic interface crack problems in dissimilar anisotropic media. J Thermal Stresses 17:285–299

    Article  Google Scholar 

  13. Lee KY, Park SJ (1995) Thermal-stress intensity factors for partially insulated interface crack under uniform heat-flow. Eng Fract Mech 50:475–482

    Article  Google Scholar 

  14. Wilson RI, Meguid SA (1995) On the determination of mixed mode stress intensity factors of an angled cracks in a disc using FEM. Finite Ele Anal Des 18:433–438

    Article  MATH  Google Scholar 

  15. Martynyak RM (1999) Thermal opening of an initially closed interface crack under conditions of imperfect thermal contact between its lips. Mater Sci 35:612–622

    Article  Google Scholar 

  16. Zhang SC (2000) Thermal stress intensities at an interface crack between two elastic layers. Int J Fract 106:277–290

    Article  Google Scholar 

  17. Herrmann KP, Loboda VV (2001) Contact zone models for an interface crack in a thermomechanically loaded anisotropic bimaterial. J Thermal Stresses 24:479–506

    Article  Google Scholar 

  18. Kharun IV, Loboda VV (2004) A thermoelastic problem for interface cracks with contact zones. Int J Solids Struct 41:159–175

    Article  MATH  Google Scholar 

  19. Kharun IV, Loboda VV (2004) A problem of thermoelasticity for a set of interface cracks with contact zones between dissimilar anisotropic materials. Mech Mater 36:585–600

    Article  Google Scholar 

  20. Herrmann KP, Loboda VV, Kharun IV (2004) Interface crack with a contact zone in an isotropic bimaterial under thermomechanical loading. Theor Appl Fract Mech 42:335–348

    Article  Google Scholar 

  21. Ratnesh K, Chandra JM (2008) Thermal weight functions for bi-material interface crack system using energy principles. Int J Solids Struct 45:6157–6176

    Article  MATH  Google Scholar 

  22. Pant M, Singh IV, Mishra BK (2010) Numerical simulation of thermo-elastic fracture problems using element free Galerkin method. Int J Mech Sci 52:1745–1755

    Article  Google Scholar 

  23. Khandelwal R, Chandra JM (2011) Thermal weight functions and stress intensity factors for bonded dissimilar media using body analogy. J Appl Mech 78:1–9

    Article  Google Scholar 

  24. Ma LF, He R, Zhang JS, Shaw B (2013) A simple model for the study of the tolerance of interfacial crack under thermal load. Acta Mech 224:1571–1577

    Article  MathSciNet  MATH  Google Scholar 

  25. Bregman AM, Kassir MK (1974) Thermal fracture of bonded dissimilar media containing a penny-shaped crack. Int J Fract 10:87–98

    Article  Google Scholar 

  26. Muskhelishvili NI (1958) Singular integral equations. Springer, Dordrecht

    Google Scholar 

  27. Andrzej K, Stanislaw JM (2003) On the three-dimensional problem of an interface crack under uniform heat flow in a bimaterial periodically-layered space. Int J Fract 123:127–138

    Article  Google Scholar 

  28. Johnson J, Qu J (2007) An interaction integral method for computing mixed mode stress intensity factors for curved bimaterial interface cracks in non-uniform temperature fields. Eng Fract Mech 74:2282–2291

    Article  Google Scholar 

  29. Nomura Y, Ikeda T, Miyazaki N (2010) Stress intensity factor analysis of a three-dimensional interfacial corner between anisotropic bimaterials under thermal stress. Int J Solids Struc 47:1775–1784

    Article  MATH  Google Scholar 

  30. Guo JH, Yu J, Xing YM (2013) Anti-plane analysis on a finite crack in a one-dimensional hexagonal quasicrystal strip. Mech Res Commun 52:40–45

    Article  Google Scholar 

  31. Li L, Wu HP, Bao YM, Lu YL, Chai GZ (2013) Analysis of weight function method for three dimensional interface crack under mechanical and thermal loading. Acta Mech Sinica 34(4):401–409 (In Chinese)

    Google Scholar 

  32. Crouch SL (1976) Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. Int J Numer Methods Eng 10:301–343

    Article  MathSciNet  MATH  Google Scholar 

  33. Tang RJ, Chen MC, Yue JC (1998) Theoretical analysis of three-dimensional interface crack. Sci Chin 41(4):443–448

    MATH  Google Scholar 

  34. Chen MC, Noda NA, Tang RJ (1999) Application of finite-part integrals to planar interfacial fracture problems in three-dimensional bimaterials. J Appl Mech 66:885–890

    Article  Google Scholar 

  35. Chen MC, Gao C, Tang RJ (1999) A study on stress intensity factors and singular stress fields of 3D interface crack. Acta Mech Sinica 20(1):8–15 (In Chinese)

    Google Scholar 

  36. Zhao MH, Fang PZ, Shen YP (2004) Boundary integral-differential equations and boundary element method for interfacial cracks in three-dimensional piezoelectric media. Eng Anal Bound Elem 28:753–762

    Article  MATH  Google Scholar 

  37. Zhao MH, Li N, Fan CY, Xu GT (2008) Analysis method of planar interface cracks of arbitrary shape in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. Int J Solids Struct 45:1804–1824

    Article  MATH  Google Scholar 

  38. Zhao YF, Zhao MH, Pan EN, Fan CY (2015) Green’s functions and extended displacement discontinuity method for interfacial cracks in three-dimensional transversely isotropic magneto-electro-elastic bi-materials. Int J Solids Struct 52:56–71

    Article  Google Scholar 

  39. Zhao M, Dang H, Fan C, Chen Z (2016) Analysis of an arbitrarily shaped interface cracks in a three-dimensional isotropic thermoelastic bi-material. Part 1: theoretical solution. Int J Solids Struct 97–98:168–181

    Article  Google Scholar 

  40. Zhao MH, Shen YP, Liu YJ, Liu GN (1988) The method of analysis of cracks in three-dimensional transversely isotropic media: boundary integral equation approach. Eng Anal Bound Elem 21:169–178

    Article  MATH  Google Scholar 

  41. Zhao MH, Liu YJ (1994) Boundary integral equations and the boundary element method for three-dimensional fracture mechanics. Eng Anal Bound Elem 13:333–338

    Article  Google Scholar 

  42. Hou PF, Jiang HY, Li QH (2013) Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications 1: general solutions. J Therm Stresses 36:727–747

    Article  Google Scholar 

  43. Hutchinson JW, Mear ME, Rice JR (1987) Crack paralleling an interface between dissimilar materials. ASME J Appl Mech 54:828–832

    Article  Google Scholar 

  44. Rao SS, Sunar M (1993) Analysis of distributed thermopiezoelectric sensors and actuators inadvanced intelligent structures. AIAA J 31:1280–1086

    Article  Google Scholar 

  45. Mindlin RD (1974) Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int J Solids Struct 10:625–637

    Article  MATH  Google Scholar 

  46. Nowacki W (1978) Some general theorems of thermopiezoelectricity. J Therm Stresses 1:171–182

    Article  Google Scholar 

  47. Chandrasekharaiah DS (1988) A generalized linear thermoelasticity theroy for piezoelectric media. Acta Mech 71:39–49

    Article  MATH  Google Scholar 

  48. Altay GA, Dokmeci MC (2003) Some comments on the higher order theories of piezoelectric, piezothermoelastic and thermopiezoelectric rods and shells. Int J Solids Struct 40:4699–4706

    Article  MATH  Google Scholar 

  49. Ashida F, Tauchert TR, Noda N (1994) A general solution technique for piezothermoelasticity of hexagonal solids of class 6 mm in cartesian coordinates. Math Mech 74:87–95

    MATH  Google Scholar 

  50. Ding HJ, Guo FL, Hou PF (2000) A general solution for piezothermoelasticity of transversely isotropic piezoelectric materials and its applications. Int J Eng Sci 38:1415–1440

    Article  MATH  Google Scholar 

  51. Tarn JQ (2002) A state space formalism for piezothermoelasticity. Int J Solids Struct 39:5173–5184

    Article  MATH  Google Scholar 

  52. Hou PF, Leung AYT, Chen CP (2009) Three-dimensional fundamental solution for transversely isotropic piezothermoelastic material. Int J Num Methods Eng 78:84–100

    Article  MathSciNet  MATH  Google Scholar 

  53. Yu SW, Qin QH (1996) Damage analysis of thermopiezoelectric properties: part I-crack tip singularities. Theor Appl Fract Mech 25:263–277

    Article  Google Scholar 

  54. Chen WQ (2000) On the general solution for piezothermoelasticity for transverse isotropy with application. ASME J Appl Mech 67:705–711

    Article  MathSciNet  MATH  Google Scholar 

  55. Gao CF, Wang MZ (2001) Collinear permeable cracks in thermopiezoelectric materials. Mech Mater 33:1–9

    Article  Google Scholar 

  56. Chen WQ, Lim CW, Ding HJ (2005) Point temperature solution for a penny-shaped crack in an infinite transversely isotropic thermo-piezo-elastic medium. Eng Anal Bound Elem 29:524–532

    Article  MATH  Google Scholar 

  57. Qin QH (1998) Thermoelectroelastic Green’s function for a piezoelectric plate containing an elliptic hole. Mech Mater 30:21–29

    Article  Google Scholar 

  58. Qin QH (1999) Thermoelectroelastic analysis of cracks in piezoelectric half-plane by BEM. Com Mech 23:353–360

    Article  MATH  Google Scholar 

  59. Qin QH, Lu M (2000) BEM for crack-inclusion problems in thermopiezoelectric materials. Eng Fract Mech 69:577–588

    Article  Google Scholar 

  60. Qin QH, Mai YW (2002) BEM for crack-hole problems in thermopiezoelectric materials. Eng Fract Mech 69:577–588

    Article  Google Scholar 

  61. Shang FL, Wang ZK, Li ZH (1996) Thermal stresses anaysis of a three-dimensional crack in a thermopiezoelectric solid. Eng Fract Mech 55:737–750

    Article  Google Scholar 

  62. Shang FL, Kuna M, Scherzer M (2002) Analytical solution for two penny-shaped crack problems in thermo-piezoelectric materials and their finite element comparisons. Int J Fract 117:113–128

    Article  Google Scholar 

  63. Shang FL, Kuna M, Scherzer M (2003) Development of finite element techniques for three-dimensional analyses of thermo-piezoelectric materials. ASME J Eng Mater Tech 125:18–21

    Article  Google Scholar 

  64. Shang FL, Kuna M (2003) Thermal stress around a penny-shaped crack in a thermopiezoelectric solid. Com Mater Sci 26:197–201

    Article  Google Scholar 

  65. Niraula OP, Noda N (2002) Thermal stress analysis in thermopiezoelectric strip with an edge crack. J Therm Stresses 25:389–405

    Article  Google Scholar 

  66. Gao CF, Zhao YT, Wang MZ (2002) An exact and explicit treatment of an elliptic hole problem in thermopiezoelectric media. Int J Solids Struct 39:2665–2685

    Article  MATH  Google Scholar 

  67. Tsamasphyros G, Song ZF (2005) Analysis of a crack in a finite thermopiezoelectric plate under heat flux. Int J Solids Struct 136:143–166

    MATH  Google Scholar 

  68. Ueda S (2006) Thermal stress intensity factors for a normal crack in a piezoeelctric strip. J Therm Stresses 29:1107–1125

    Article  Google Scholar 

  69. Ueda S, Hatano H (2012) T-shaped crack in a piezoelectric material under thermo-electro-mechanical loadings. J Therm Stresses 35:12–29

    Article  Google Scholar 

  70. Ueda S, Tani Y (2008) Thermal stress intensity factors for two coplanar cracks in a piezoelectric strip. J Therm Stresses 31:403–415

    Article  Google Scholar 

  71. Ueda S, Ikeda Y, Ishii A (2012) Transient thermoelectromecahnical response of a piezoelectric strip with two parallel cracks of different lengths. J Therm Stresses 35:534–549

    Article  Google Scholar 

  72. Wang BL, Noda N (2010) Exact thermoelectroelasticity solution for a penny-shaped crack in piezoelectric materials. J Therm Stresses 27:241–251

    Article  Google Scholar 

  73. Wang BL, Sun YG, Zhu Y (2011) Fracture of a finite piezoelectric layer with a penny-shaped crack. Int J Fract 172:19–39

    Article  MATH  Google Scholar 

  74. Zhong XC, Zhang KS (2013) An opening crack model for thermopiezoelectric solids. Eur J Mech A-Solids 41:101–110

    Article  MathSciNet  MATH  Google Scholar 

  75. Shen S, Wang X, Kuang ZB (1995) Fracture mechanics for piezothermoelastic materials. Acta Mech Sinica 16(4):283–293 (In Chinese)

    Google Scholar 

  76. Shen S, Kuang ZB (1998) Interface crack in bi-piezothermoelastic media and the interaction with a point heat source. Int J Solids Struct 35:3899–3915

    Article  MATH  Google Scholar 

  77. Qin QH, Mai YW (1998) Thermoelectroelastic Green’s function and its application for bimaterial of piezoelectric materials. Arch Appl Mech 68:433–444

    Article  MATH  Google Scholar 

  78. Qin QH, Mai YW (1999) A closed crack tip model for interface cracks in thermopiezoelectric materials. Int J Solids Struct 36:2463–2479

    Article  MATH  Google Scholar 

  79. Gao CF, Wang MZ (2001) A permeable interface crack between dissimilar thermopiezoelectric media. Acta Mech 149:85–95

    Article  MATH  Google Scholar 

  80. Williams ML (1959) The stresses around a fault or cracks in dissimilar media. Bull Seismol Soc Am 49:199–204

    MathSciNet  Google Scholar 

  81. Herrmann KP, Loboda VV (2003) Fracture mechanical assessment of interface cracks with contact zones in piezoelectric bimaterials under thermoelectromechanical loadings I. Electrically permeable interface cracks. Int J Solids Struct 40:4191–4217

    Article  MATH  Google Scholar 

  82. Herrmann KP, Loboda VV (2003) Fracture mechanical assessment of interface cracks with contact zones in piezoelectric bimaterials under thermoelectromechanical loadings II. Electrically impermeable interface cracks. Int J Solids Struct 40:4291–4237

    MATH  Google Scholar 

  83. Ueda S (2003) Thermally induced fracture of a piezoelectric laminate with a crack normal to interfaces. J Therm Stresses 26:311–331

    Article  Google Scholar 

  84. Herrmann KP, Loboda VV (2006) Contact zone approach for a moving interface crack in a piezoelectric bimaterial under thermoelectromechanical loading. Arch Appl Mech 75:665–677

    Article  MATH  Google Scholar 

  85. Hou PF, Leung AYT (2009) Three-dimensional Green’s functions for two-phase transversely isotropic piezothermoelastic media. J Intell Mat Syst Struct 20:11–21

    Article  Google Scholar 

  86. Zhao MH, Dang HY, Fan CY, Chen ZT (2017) Extended displacement discontinuity method for an interface crack in a three-dimensional transversely isotropic piezothermoelastic bi-material. Part 1: Theoretical solution. Int J Solids Struct 117:14–25

    Article  Google Scholar 

  87. Fan CY, Dang HY, Zhao MH (2014) Nonlinear solution of the PS model for a semi-permeable crack in a 3D piezoelectric medium. Eng Anal Bound Elements 46:23–29

    Article  MathSciNet  MATH  Google Scholar 

  88. Li XF, Lee KY (2015) Effect of heat conduction of penny-shaped crack interior on thermal stress intensity factors. Int J Heat Mass Transf 91:127–134

    Article  Google Scholar 

  89. Wang BL, Niraula OP (2007) Transient thermal fracture analysis of transversely isotropic magneto-electro-elastic materials. J Therm Stresses 30:297–317

    Article  Google Scholar 

  90. Feng WJ, Pan E, Wang X (2008) Stress analysis of a penny-shaped crack in a magneto-electro-thermo-elastic layer under uniform heat flow and shear loads. J Therm Stresses 31:497–514

    Article  Google Scholar 

  91. Aboudi J (2001) Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Mater Struct 10:867–877

    Article  Google Scholar 

  92. Gao CF, Kessler H, Balke H (2003) Fracture analysis of electromagnetic thermoelastic solids. Eur J Mech A-Solid 22:433–442

    Article  MATH  Google Scholar 

  93. Niraula OP, Wang BL (2006) Thermal stress analysis in magneto-electro-thermo-elasticity with a penny-shaped crack under uniform heat flow. J Therm Stresses 29:423–437

    Article  Google Scholar 

  94. Zhong XC, Huang QA (2014) Thermal stress intensity factor for an opening crack in thermomagnetoelectroelastic solids. J Therm Stresses 37:928–946

    Article  Google Scholar 

  95. Chen WQ, Lee KY, Ding HJ (2004) General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. Int J Eng Sci 42:1361–1379

    Article  MATH  Google Scholar 

  96. Hou PF, Yi T, Wang L (2008) 2D general solution and fundamental solution for orthotropic electro-magneto-thermo-elastic materials. J Therm Stresses 31:807–822

    Article  Google Scholar 

  97. Hou PF, Chen HR, He S (2009) Three-dimensional fundamental solution for transversely isotropic electro-magneto-thermo-elastic materials. J Therm Stresses 32:887–904

    Article  Google Scholar 

  98. Li Y, Dang HY, Xu GT, Fan CY, Zhao MH (2016) Extended displacement discontinuity boundary integral equation and boundary element method for cracks in thermo-magneto-electro-elastic media. Smart Mater Struct 25:085048

    Article  Google Scholar 

  99. Gao CF, Tong P, Zhang TY (2003) Interfacial crack problems in magneto-electric solids. Int J Eng Sci 41:2105–2121

    Article  Google Scholar 

  100. Chue CH, Liu TJ (2005) Magneto-electro-elastic antiplane analysis of a bimaterial BaTiO3-CoFe2O4 composite wedge with an interface crack. Theor Appl Fract Mech 44:275–296

    Article  Google Scholar 

  101. Li R, Kardomateas GA (2006) The mode III interface crack in piezo-electro-magneto-elastic dissimilar bimaterials. J Appl Mech Trans ASME 73:220–227

    Article  MATH  Google Scholar 

  102. Zhong XC, Li XF (2006) A finite length crack propagating along the interface of two dissimilar magnetoelectroelastic materials. Int J Eng Sci 44:1394–1407

    Article  Google Scholar 

  103. Ma P, Feng WJ, Su RKL (2011) Fracture assessment of an interface crack between two dissimilar magnetoelectroelastic materials under heat flow and magnetoelectromechanical loadings. Acta Mechanica Solids Sinica 24:0894–9166

    Google Scholar 

  104. Herrmann KP, Loboda VV, Khodanen TV (2010) An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial. Arhive Appl Mech 80:651–670

    Article  MATH  Google Scholar 

  105. Feng WJ, Ma P, Su RKL (2012) An electrically impermeable and magnetically permeable interface crack with a contact zone in magneto-electroelastic bimaterials under a thermal flux and magnetoelectromechanical loads. Int J Solids Struct 49:3472–3483

    Article  Google Scholar 

  106. Ma P, Jing J (2013) Further analysis for fracture behaviors of an interfacial crack between piezoelectric and piezomagnetic layers. Engs Mech 30:327–333

    Google Scholar 

  107. Li JY, Dunn ML (1998) Anisotropic coupled-field inclusion and inhomogeneity problems. J Intell Mater Syst Struct 7:404

    Article  Google Scholar 

  108. Huang JH, Kuo WS (1997) The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J Appl Phys 81:1378

    Article  Google Scholar 

  109. Zhao MH, Dang HY, Fan CY, Chen ZT (2017) Analysis of an interface crack of arbitrary shape in a three-dimensional transversely isotropic magnetoelectrothermoelastic bi-material. Part 1: theoretical solution. J Therm Stresses 40(8):929–952

    Article  Google Scholar 

  110. Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1953

    Article  Google Scholar 

  111. Dubois JM, Kang SS, Stebut JV (1991) Quasicrystalline low-friction coatings. J Mater Sci Lett 10:537–541

    Article  Google Scholar 

  112. Wu JS, Brien V, Brunet P, Dong C, Dubois JM (2000) Scratch-induced surface microstructures on the deformed surface of Al-Cu-Fe icosahedral quasicrystals. Mater Sci Eng 4:294–296

    Google Scholar 

  113. Fan TY, Tang ZY, Chen WQ (2012) Theory of linear, nonlinear and dynamic fracture of quasicrystals. Eng Fract Mech 82:185–194

    Article  Google Scholar 

  114. Li PD, Li XY, Kang GZ (2015) Crack tip plasticity of half-infinite Dugdale crack embedded in an infinite space of one-dimensional hexagonal quasicrystal. Mech Res Commun 70:72–78

    Article  Google Scholar 

  115. Wang YW, Wu TH, Li XY, Kang GZ (2015) Fundamental elastic field in an infinite medium of two-dimensional hexagonal quasicrystal with a planar crack: 3D exact analysis. Int J Solids Struct 66:171–183

    Article  Google Scholar 

  116. Tupholme GE (2015) Row of shear cracks moving in one-dimensional hexagonal quasicrystalline materials. Eng Fract Mech 134:451–458

    Article  Google Scholar 

  117. Sladek J, Sladek V, Atluri SN (2015) Path-independent integral in fracture mechanics of quasicrystals. Eng Fract Mech 140:61–71

    Article  Google Scholar 

  118. Fan CY, Li Y, Xu GT, Zhao MH (2016) Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals. Mech Res Commun 74:39–44

    Article  Google Scholar 

  119. Wang X (2004) Eshelby’s problem of an inclusion of arbitrary shape in a decagonal quasicrystalline plane or half-plane. Int J Eng Sci 42:1911–1930

    Article  MathSciNet  MATH  Google Scholar 

  120. Gao Y, Ricoeur A (2012) Three-dimensional analysis of a spheroidal inclusion in a two-dimensional quasicrystal body. Phil Mag 92:4334–4353

    Article  Google Scholar 

  121. Guo JH, Zhang ZY, Xing YM (2016) Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites. Phil Mag 96:349–369

    Article  Google Scholar 

  122. Guo JH, Pan E (2016) Three-phase cylinder model of one-dimensional hexagonal piezoelectric quasicrystal composites. J Appl Mech 83:0810071

    Article  Google Scholar 

  123. Fan TY, Trebin HR, Messerschmidt U, Mai YW (2004) Plastic flow coupled with a crack in some one- and two-dimensional quasicrystals. J Phys: Condens Matter 16:5229–5240

    Google Scholar 

  124. Li HL, Liu GT (2012) Stroh formulism for icosahdral quasicrystal and its applications. Phys Lett A 376:987–990

    Article  Google Scholar 

  125. Lazar M, Agiasofitou E (2014) Fundamentals in generalized elasticity and dislocation theory of quasicrystals: green tensor, dislocation key-formulas and dislocation loops. Phil Mag 94:4080–4101

    Article  Google Scholar 

  126. Chen WQ, Ma YL, Ding HJ (2004) On three-dimensional elastic problems of one-dimensional hexagonal quasicrystals bodies. Mech Res Commun 31:633–641

    Article  MathSciNet  MATH  Google Scholar 

  127. Wang X (2006) The general solution of one-dimensional hexagonal quasicrystal. Mech Res Comm 33:576–580

    Article  MathSciNet  MATH  Google Scholar 

  128. Li XY, Fan TY (2008) Exact solutions of two semi-infinite collinear cracks in a strip of one dimensional hexagonal quasicrystal. Appl Math Comput 196:1–5

    Article  MathSciNet  MATH  Google Scholar 

  129. Guo JH, Lu ZX (2011) Exact solution of four cracks originating from an elliptical hole in one-dimensional hexagonal quasicrystals. Appl Math Comput 217:9397–9403

    MathSciNet  MATH  Google Scholar 

  130. Li XY, Li PD (2012) Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Phys Lett A 376:2004–2009

    Article  MATH  Google Scholar 

  131. Li XY, Deng H (2013) On 2D Green’s functions for 1D hexagonal quasi-crystals. Phys B 430:45–51

    Article  Google Scholar 

  132. Li XY, Wang T, Zheng RF, Kang GZ (2015) Fundamental thermo-electro-elastic solutions for 1D hexagonal QC. Z Angew Math Mech 95:457–468

    Article  MathSciNet  MATH  Google Scholar 

  133. Yang J, Li X (2014) The anti-plane shear problem of two symmetric cracks originating from an elliptical hole in 1D hexagonal piezoelectric QCs. Adv Mater Res 936:127–135

    Article  Google Scholar 

  134. Yang J, Li X (2015) Analytic solutions of problem about a circular hole with a straight crack in one-dimensional hexagonal quascrystals with piezoelectric effects. Theor Appl Fract Mech 82:17–24

    Article  Google Scholar 

  135. Yu J, Guo JH, Pan E, Xing YM (2015) General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics. Appl Math Mech 36:793–814

    Article  MathSciNet  MATH  Google Scholar 

  136. Li PD, Li XY, Zheng RF (2013) Thermo-elastic Green’s functions for an infinite bi-material of one-dimensional hexagonal quasi-crystals. Phys Lett A 377:637–642

    Article  MathSciNet  Google Scholar 

  137. Zhang LL, Wu D, Xu WS, Yang LZ, Ricoeur A, Wang ZB, Gao Y (2016) Green’s functions of one-dimensional quasicrystal bi-material with piezoelectric effect. Phys Lett A 380:3222–3228

    Article  MathSciNet  Google Scholar 

  138. Ding HJ, Yang WG, Hu CZ, Wang RH (1993) Generalized elasticity theory of quasicrystals. Phys Rev B 48:7003–7010

    Article  Google Scholar 

  139. Wang X, Pan E (2008) Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals. Pramana J Phys 70:911–933

    Article  Google Scholar 

  140. Zhao MH, Dang HY, Fan CY, Chen ZT (2017) Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material. Part 1: theoretical solution. Eng Fract Mech 179:59–78

    Article  Google Scholar 

  141. Dang HY, Zhao MH, Fan CY, Chen ZT (2016) Analysis of an arbitrarily shaped interface cracks in a three-dimensional isotropic thermoelastic bi-material. Part 2: numerical method. Int J Solids Struct 99:48–56

    Article  Google Scholar 

  142. Dang HY, Zhao MH, Fan CY, Chen ZT (2017) Extended displacement discontinuity method for an interface crack in a three-dimensional transversely isotropic piezothermoelastic bi-material. Part 2: numerical method. Int J Solids Struct 109:199–209

    Article  Google Scholar 

  143. Dang HY, Zhao MH, Fan CY, Chen ZT (2017) Analysis of an interface crack of arbitrary shape in a three-dimensional transversely isotropic magnetoelectrothermoelastic bi-material. Part 2: numerical method. J Therm Stresses 40(8):953–972

    Article  Google Scholar 

  144. Anderson TL (1991) Fracture mechanics, fundamentals and applications. CRC Press

    Google Scholar 

  145. Dang HY, Zhao MH, Fan CY, Chen ZT (2017) Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material. Part 2: numerical method. Eng Fract Mech 180:268–281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengtao Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Z., Akbarzadeh, A. (2020). Thermal Fracture of Advanced Materials Based on Fourier Heat Conduction. In: Advanced Thermal Stress Analysis of Smart Materials and Structures. Structural Integrity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-25201-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25201-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25200-7

  • Online ISBN: 978-3-030-25201-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics