Skip to main content

Coupled Thermal Stresses in Advanced Smart Materials

  • Chapter
  • First Online:
  • 667 Accesses

Part of the book series: Structural Integrity ((STIN,volume 10))

Abstract

Besides being the snack of choice of the Chinese Giant panda, the bamboo plant also represents a near-perfect natural example of a functionally graded material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ray AK et al (2005) Bamboo—a functionally graded composite-correlation between microstructure and mechanical strength. J Mater Sci 40(19):5249–5253

    Article  Google Scholar 

  2. Rubio WM et al (2010) Functionally graded piezoelectric material systems—a multiphysics perspective, in advanced computational materials modeling. Wiley-VCH Verlag GmbH & Co. KGaA, pp 301–339

    Google Scholar 

  3. Akbarzadeh A, Babaei M, Chen Z (2011) Thermopiezoelectric analysis of a functionally graded piezoelectric medium. Int J Appl Mech 3(01):47–68

    Article  Google Scholar 

  4. Akbarzadeh A, Cui Y, Chen Z (2017) Thermal wave: from nonlocal continuum to molecular dynamics. RSC Adv 7(22):13623–13636

    Article  Google Scholar 

  5. Babaei M, Chen Z (2008) Dynamic response of a thermopiezoelectric rod due to a moving heat source. Smart Mater Struct 18(2):025003

    Article  Google Scholar 

  6. Parton V, Kudryavtsev B (1988) Electromagnetoelasticity, vol 2. Gordon and Breach Science Publishers, New York, p 90059-0

    Google Scholar 

  7. Vernotte P (1958) Les paradoxes de la théorie continue de léquation de la chaleur. C R Hebd Seances Acad Sci 246(22):3154–3155

    MATH  Google Scholar 

  8. Cattaneo C (1948) Sullaconduzione de calore. Atti del. Seminar 3:83–101

    Google Scholar 

  9. Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253

    Article  MathSciNet  Google Scholar 

  10. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309

    Article  Google Scholar 

  11. Chandrasekharaiah D (1988) A generalized linear thermoelasticity theory for piezoelectric media. Acta Mech 71(1):39–49

    Article  MathSciNet  Google Scholar 

  12. He T, Cao L, Li S (2007) Dynamic response of a piezoelectric rod with thermal relaxation. J Sound Vib 306(3):897–907

    Article  Google Scholar 

  13. Boyce WE, DiPrima RC, Haines CW (1969) Elementary differential equations and boundary value problems, vol 9. Wiley, New York

    MATH  Google Scholar 

  14. Durbin F (1974) Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput J 17(4):371–376

    Article  MathSciNet  Google Scholar 

  15. Wojnar R, Bytner S, Galka A (1999) Effective properties of elastic composites subject to thermal Fields. Therm Stresses, 5

    Google Scholar 

  16. Landolt HH et al (1980) Numerical data and functional relationships in science and technology: new series. Nuclear and particle physics. Elastic and charge exchange scattering of elementary particles. Nucleon nucleon and kaon nucleon scattering, vol 9. Springer, Berlin

    Google Scholar 

  17. Babaei M, Chen Z (2009) The transient coupled thermo-piezoelectric response of a functionally graded piezoelectric hollow cylinder to dynamic loadings. Proc R Soc London: Math Phys Eng Sci (The Royal Society)

    Google Scholar 

  18. Liu G et al (2003) Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates. J Sound Vib 268(1):131–147

    Article  Google Scholar 

  19. Takagi K et al (2002) Design and fabrication of functionally graded PZT/Pt piezoelectric bimorph actuator. Sci Technol Adv Mater 3(2):217–224

    Article  Google Scholar 

  20. Richard BH, Eslami MR (2008) Thermal stresses-advanced theory and applications. Springer, The Netherlands

    MATH  Google Scholar 

  21. Babaei MH, Akhras G (2011) Temperature-dependent response of radially polarized piezoceramic cylinders to harmonic loadings. J Intell Mater Syst Struct 22(7):645–654

    Article  Google Scholar 

  22. Eslami M (2003) A first course in finite element analysis. Amirkabir University Press, Tehran

    Google Scholar 

  23. Tsamasphyros G, Song Z (2006) The general solution for a finite thermopiezoelectric plate containing a hole and a crack. Arch Appl Mech 76(1):1–17

    Article  Google Scholar 

  24. Liu W et al (2003) Noise and specific detectivity of pyroelectric detectors using lead titanate zirconate (PZT) thin films. Microelectron Eng 66(1):785–791

    Article  Google Scholar 

  25. Ootao Y, Akai T, Tanigawa Y (2008) Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow cylinder. J Therm Stresses 31(10):935–955

    Article  Google Scholar 

  26. Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Therm Stresses 22(4–5):451–476

    MathSciNet  MATH  Google Scholar 

  27. Hetnarski R, Ignaczak J (2000) Nonclassical dynamical thermoelasticity. Int J Solids Struct 37(1):215–224

    Article  MathSciNet  Google Scholar 

  28. Green A, Lindsay K (1972) Thermoelasticity. J Elast 2(1):1–7

    Article  Google Scholar 

  29. Tzou DY (1993) An engineering assessment to the relaxation time in thermal wave propagation. Int J Heat Mass Transf 36(7):1845–1851

    Article  Google Scholar 

  30. Al-Huniti NS, Al-Nimr M, Naji M (2001) Dynamic response of a rod due to a moving heat source under the hyperbolic heat conduction model. J Sound Vib 242(4):629–640

    Article  Google Scholar 

  31. He T, Tian X, Shen Y (2002) State space approach to one-dimensional thermal shock problem for a semi-infinite piezoelectric rod. Int J Eng Sci 40(10):1081–1097

    Article  Google Scholar 

  32. Aouadi M (2007) Generalized thermoelastic-piezoelectric problem by hybrid Laplace transform-finite element method. Int J Comput Methods Eng Sci Mech 8(3):137–147

    Article  MathSciNet  Google Scholar 

  33. Babaei M, Chen Z (2010) Transient thermopiezoelectric response of a one-dimensional functionally graded piezoelectric medium to a moving heat source. Arch Appl Mech 80(7):803–813

    Article  Google Scholar 

  34. El-Karamany AS, Ezzat MA (2005) Propagation of discontinuities in thermopiezoelectric rod. J Therm Stresses 28(10):997–1030

    Article  Google Scholar 

  35. Mindlin R (1961) On the equations of motion of piezoelectric crystals. Prob Continuum Mech, 282–290

    Google Scholar 

  36. Davis S (2009) A finite algorithm for the solution to an algebraic equation. Int J Algebra 3(10):449–460

    MathSciNet  MATH  Google Scholar 

  37. Mikhalkin EN (2009) Solution of fifth-degree equations. Russ Math (Iz VUZ) 53(6):15–23

    Article  MathSciNet  Google Scholar 

  38. Tignol J (1987) Theory of algebraic equations. Wiley, New York

    Google Scholar 

  39. Hetnarski RB, Eslami MR, Gladwell G (2009) Thermal stresses: advanced theory and applications, vol 41. Springer, Berlin

    Google Scholar 

  40. Akbarzadeh A, Babaei M, Chen Z (2011) Coupled thermopiezoelectric behaviour of a one-dimensional functionally graded piezoelectric medium based on C-T theory. Proc Inst Mech Eng, Part C: J Mech Eng Sci 225(11):2537–2551

    Article  Google Scholar 

  41. Chandrasekharaiah D (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51:705–730

    Article  Google Scholar 

  42. Tzou DY (1995) The generalized lagging response in small-scale and high-rate heating. Int J Heat Mass Transf 38(17):3231–3240

    Article  Google Scholar 

  43. Antaki PJ (1998) Solution for non-Fourier dual phase lag heat conduction in a semiinfinite slab with surface heat flux. Int J Heat Mass Transf 41(14):2253–2258

    Article  Google Scholar 

  44. Tzou DY (1995) Experimental support for the lagging behavior in heat propagation. J Thermophys Heat Transfer 9(4):686–693

    Article  Google Scholar 

  45. Tzou D (1997) Macro- to micro-scale heat transfer: the lagging behavior. Taylor & Francis, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengtao Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Z., Akbarzadeh, A. (2020). Coupled Thermal Stresses in Advanced Smart Materials. In: Advanced Thermal Stress Analysis of Smart Materials and Structures. Structural Integrity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-25201-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25201-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25200-7

  • Online ISBN: 978-3-030-25201-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics