Skip to main content

Continuous Process Monitoring Through Ensemble-Based Anomaly Detection

  • Chapter
  • First Online:

Abstract

In many production processes, a complete quality inspection of all products is not feasible due to technological and organizational restrictions. In order to ensure zero-defect products, monitoring process parameters in real time and using them to predict product quality by supervised learning methods is a very established approached. However, this approach requires a joining of process parameters and quality features. In order to guarantee high-quality products even in the absence of traceability, a continuous process monitoring approach based on an anomaly detection ensemble method is beneficial.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature

  • Abbasi, S., Nejatian, S., Parvin, H., Rezaie, V., & Bagherifard, K. (2018). Clustering ensemble selection considering quality and diversity. Artificial Intelligence Review, 1–30.

    Google Scholar 

  • Aggarwal, C. C. (2012). Outlier ensembles. SIGKDD Explorations, 14(2), 49–58.

    Article  Google Scholar 

  • Austina, P. C., Tua, J. V., Hoe, J. E., Levye, D., & Lee, D. S. (2013). Using methods from the data-mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes. Journal of Clinical Epidemiology, 66(4), 398–407.

    Article  Google Scholar 

  • Banfield, R. E., Hall, L. O., Bowyer, K. W., & Kegelmeyer, W. P. (2005). Ensemble diversity measures and their application to thinning. Information Fusion, 6, 49–62.

    Article  Google Scholar 

  • Breiman, L. (1994). Bagging predictors. Technical report no. 421. Department of Statistics, University of California.

    Google Scholar 

  • Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-based local outliers. In Proceedings of the ACM SIGMOD International Conference on Management of data (pp. 93–104).

    Google Scholar 

  • Caruana, R., Niculescu-Mizil, A., Crew, G., & Ksikes, A. (2004). Ensemble selection from libraries of models. In Proceedings of the 21st International Conference on Machine Learning.

    Google Scholar 

  • Chen, Y., & Zhao, Y. (2008). A novel ensemble of classifiers for microarray data classification. Applied Soft Computing, 8, 1664–1669.

    Article  Google Scholar 

  • Chen, W. C., Lee, A. H. I., Deng, W. J., & Liu, K. Y. (2007). The implementation of neural network for semiconductor PECVD process. Expert Systems with Applications, 32(4), 1148–1153.

    Article  Google Scholar 

  • Deuse, J., Schmitt, J., Stolpe, M., Wiegand, M., & Morik, K. (2017). Qualitätsprognosen zur Engpassentlastung in der Injektorfertigung unter Einsatz von Data Mining. In N. Gronau (Eds.), Industrial Internet of Things in der Arbeits- und Betriebsorganisation. Wissenschaftliche Gesellschaft für Arbeits- und Betriebsorganisation (WGAB) (pp. 47–60).

    Google Scholar 

  • Domingos, P. (1999). MetaCost: A general method for making classifiers cost-sensitive. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 155–164).

    Google Scholar 

  • Dörmann, O., Hans W., Linß, G., Weckenmann, A., & Bettin, V. (2009). Ansatz für ein prozessintegriertes Qualitätsregelungssystem für nicht stabile Prozesse. Ilmenau.

    Google Scholar 

  • Gani, W., & Limam, M. (2013). Performance evaluation of one-class classification-based control charts through an industrial application. Journal of Quality and Reliability Engineering International, 29, 841–854.

    Article  Google Scholar 

  • Gani, W., & Limam, M. (2014). A one-class classification-based control chart using the K-means data description algorithm. Journal of Quality and Reliability Engineering, 39(3), 461–474.

    Google Scholar 

  • Goldstein, M., & Uchida, S. (2016). A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE, 11(4).

    Google Scholar 

  • Guessasma, S., Salhi, Z., Montavon, G., Gougeon, P., & Coddet, C. (2004). Artificial intelligence implementation in the APS process diagnostic. Materials of Science and Engineering: B, 110(3), 285–295.

    Article  Google Scholar 

  • Hawkins, D. M. (1980). Identification of outliers. London: Springer.

    Book  Google Scholar 

  • He, Z., Xu, X., & Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognition Letters, 24, 1641–1650.

    Article  Google Scholar 

  • Kaneko, H., & Funatsu, K. (2013). Adaptive soft sensor model using online support vector regression with time variable and discussion of appropriate parameter settings. Procedia Computer Science, 22, 580–589.

    Article  Google Scholar 

  • Kim, Y., & Kim, S. B. (2018). Optimal false alarm controlled support vector data description for multivariate process monitoring. Journal of Process Control, 65, 1–14.

    Article  Google Scholar 

  • Kriegel, H.-P., Kröger, P., Schubert, E., & Zimek, A. (2009). LoOP: Local outlier probabilities. In Proceedings of the 18th ACM Conference on Information and Knowledge Management (pp. 1649–1652).

    Google Scholar 

  • Kumar, S., Choudhary, A. K., Kumar, M., Shankar, R., & Tiwari, M. K. (2006). Kernel distance-based robust support vector methods and its application in developing a robust K-chart. International Journal of Production Research, 44(1), 77–96.

    Article  Google Scholar 

  • Liu, X., Xie, L., Kruger, U., Littler, T., & Wang, S. (2008). Statistical-based monitoring of multivariate non-Gaussian systems. AIChE Journal, 54(9), 2379–2391.

    Article  Google Scholar 

  • Liu, Y., Pan, Y., Wang, Q., & Huang, D. (2015). Statistical process monitoring with integration of data projection and one-class classification. Chemometrics and Intelligent Laboratory Systems, 149, 1–11.

    Article  Google Scholar 

  • Ozcelik, B., & Erzurumlu, T. (2006). Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. Journal of Materials Processing Technology, 171(3), 437–445.

    Article  Google Scholar 

  • Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for mining outliers from large data sets. In Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 427–438).

    Google Scholar 

  • Shen, C., Wang, L., & Li, Q. (2007). Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. International Journal of Materials Processing Technology, 183(2–3), 412–418.

    Article  Google Scholar 

  • Shi, X., Schillings, P., & Boyd, D. (2004). Applying artificial neural networks and virtual experimental design to quality improvement of two industrial processes. International Journal of Production Research, 42(1), 101–118.

    Article  Google Scholar 

  • Soares, S. G., & Araújo, R. (2015). A dynamic and on-line ensemble regression for changing environments. Expert Systems with Applications, 42, 2935–2948.

    Article  Google Scholar 

  • Sun, R., & Tsung, F. (2003). A kernel-distance-based multivariate control chart using support vector methods. International Journal of Production Research, 41(13), 2975–2989.

    Article  Google Scholar 

  • Sung, B. S., Kim, I. S., Xue, Y., Kim, H. H., & Cha, Y. H. (2007). Fuzzy regression model to predict the bead geometry in the robotic welding process. Acta Metallurgica Sinica (English Letters), 20(6), 391–397.

    Article  Google Scholar 

  • Vega-Pons, S., & Ruiz-Shulcloper, J. (2011). International Journal of Pattern Recognition and Artificial Intelligence, 25(3), 337–372.

    Google Scholar 

  • Weihs, C., & Szepannek, G. (2009). Distances in classification. In ICDM 2009: Advances in data mining. Applications and theoretical aspects (pp. 1–12).

    Google Scholar 

  • Yang, T., Tsai, T., & Yeh, J. (2005). A neural network-based prediction model for fine pitch stencil printing quality in surface mount assembly. Engineering Applications of Artificial Intelligence, 18(3), 335–341.

    Article  Google Scholar 

  • Yao, L., & Ge, Z. (2017). Moving window adaptive soft sensor for state shifting process based on weighted supervised latent factor analysis. Control Engineering Practice, 61, 72–80.

    Article  Google Scholar 

  • Zimek, A., Campello, R. J. G. B., & Sander, J. (2014). Ensembles for unsupervised outlier detection: Challenges and research questions. SIGKDD Explorations, 15(1), 15–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Deuse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deuse, J., Wiegand, M., Weisner, K. (2019). Continuous Process Monitoring Through Ensemble-Based Anomaly Detection. In: Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M. (eds) Applications in Statistical Computing. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-030-25147-5_18

Download citation

Publish with us

Policies and ethics