Advertisement

Executive Dysfunction During Normal and Abnormal Aging

  • Mónica RosselliEmail author
  • Valeria L. Torres
Chapter

Abstract

This chapter describes executive function (EF) and the dysexecutive syndrome (DES) during normal and abnormal aging. The relationship between EFs and the frontal lobes in the context of aging is explained, particularly in relation to the frontal lobe hypothesis of aging. We discuss the main EF components and present neuropsychological and neuroimaging studies that compare these abilities across healthy young and normally aging older adults. In healthy older adults, deficits are traditionally observed in planning, inhibition, cognitive flexibility, and emotional regulation. We subsequently explore EF changes and DES resulting from neurological conditions that are prevalent in the elderly (e.g., Parkinson’s disease, Alzheimer’s disease, amnestic and vascular Mild Cognitive Impairment, the behavioral variant of Frontotemporal dementia, and vascular disorders). Common neuropsychological tasks used to assess these impairments are discussed, as well as the neural correlates that underlie some of these functions.

Keywords

Aging Dementia Executive function Dysexecutive syndrome Alzheimer’s disease Subcortical Frontal lobe Prefrontal Planning Mild cognitive impairment 

References

  1. Allain, P., Nicoleau, S., Pinon, K., Etcharry-Bouyx, F., Barré, J., Berrut, G., … & Le Gall, D. (2005). Executive functioning in normal aging: A study of action planning using the Zoo Map Test. Brain and cognition, 57(1), 4–7.Google Scholar
  2. Amieva, H., Phillips, L., & Della Sala, S. (2003). Behavioral dysexecutive symptoms in normal aging. Brain and Cognition, 53(2), 129–132.PubMedCrossRefGoogle Scholar
  3. Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 8(2), 71–82.  https://doi.org/10.1076/chin.8.2.71.8724.CrossRefGoogle Scholar
  4. Andrés, P., & Van der Linden, M. (2000). Age-related differences in supervisory attentional system functions. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 55(6), P373–P380.CrossRefGoogle Scholar
  5. Ardila, A. (2013). There are two different dysexecutive syndromes. Journal of Neurological Disorders, 1(1), 1–4.  https://doi.org/10.4172/2329-6895.1000114.
  6. Ardila, A., Ostrosky-Solis, F., Rosselli, M., & Gómez, C. (2000). Age-related cognitive decline during normal aging: the complex effect of education. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 15(6), 495–513.CrossRefGoogle Scholar
  7. Ardila, A., & Rosselli, M. (in press). Neuropsicologia clinica. Mexico D.F.: Manual Moderno.Google Scholar
  8. Ashendorf, L., Jefferson, A. L., O’Connor, M. K., Chaisson, C., Green, R. C., & Stern, R. A. (2008). Trail making test errors in normal aging, mild cognitive impairment, and dementia. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 23(2), 129–137.  https://doi.org/10.1016/j.acn.2007.11.005.CrossRefGoogle Scholar
  9. Axelrod, B. N., & Henry, R. R. (1992). Age-related performance on the Wisconsin Card sorting, similarities, and controlled oral word association tests. Clinical Neuropsychologist, 6(1), 16–26.  https://doi.org/10.1080/13854049208404113.CrossRefGoogle Scholar
  10. Baddeley, A., & Wilson, B. (1988). Frontal amnesia and the dysexecutive syndrome. Brain and Cognition, 7(2), 212–230.PubMedCrossRefGoogle Scholar
  11. Baldo, J. V., Schwartz, S., Wilkins, D., & Dronkers, N. F. (2006). Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. Journal of the International Neuropsychological Society: JINS, 12(6), 896–900.  https://doi.org/10.1017/S1355617706061078.PubMedCrossRefGoogle Scholar
  12. Benton, A. L., & Hamsher, K. (1976). Multilingual aphasia examination aphasia examination. Iowa City, IA: University of Iowa.Google Scholar
  13. Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking. The Journal of General Psychology, 39(1), 15–22.PubMedCrossRefGoogle Scholar
  14. Blanco Martín, E., Ugarriza Serrano, I., Elcoroaristizabal Martín, X., Galdos Alcelay, L., Molano Salazar, A., Bereincua Gandarias, R., et al. (2016). Dysexecutive syndrome in amnesic mild cognitive impairment: a multicenter study. BMC Neurology, 16(1), 88.  https://doi.org/10.1186/s12883-016-0607-2.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bolla, K. I., Lindgren, K. N., Bonaccorsy, C., & Bleecker, M. L. (1990). Predictors of verbal fluency (FAS) in the healthy elderly. Journal of Clinical Psychology, 46(5), 623–628.PubMedCrossRefGoogle Scholar
  16. Brennan, M., Welsh, M., & Fisher, C. (1997). Aging and executive function skills: An examination of a community-dwelling older adult population. Perceptual and Motor Skills, 84, 1187–1197.PubMedCrossRefGoogle Scholar
  17. Brickman, A. M., Paul, R. H., Cohen, R. A., Williams, L. M., MacGregor, K. L., Jefferson, A. L., … Gordon, E. (2005). Category and letter verbal fluency across the adult lifespan: relationship to EEG theta power. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 20(5), 561–573. doi.org/ https://doi.org/10.1016/j.acn.2004.12.006.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bryan, J., & Luszcz, M. A. (2000). Measurement of executive function: Considerations for detecting adult age differences. Journal of Clinical and Experimental Neuropsychology, 22(1), 40–55.PubMedCrossRefGoogle Scholar
  19. Bryan, J., Luszcz, M. A., & Crawford, J. R. (1997). Verbal knowledge and speed of information processing as mediators of age differences in verbal fluency performance among older adults. Psychology and Aging, 12(3), 473–478.PubMedCrossRefGoogle Scholar
  20. Burgess, P. W., Alderman, N., Evans, J., Emslie, H., & Wilson, B. A. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society, 4(6), 547–558.PubMedCrossRefGoogle Scholar
  21. Byczewska-Konieczny, K. (2019). Relation between cognitive and behavioral aspects of dysexecutive functioning in normal aging. Applied Neuropsychology: Adult, 1–11.  https://doi.org/10.1080/23279095.2018.1550409.
  22. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology of Aging, 17(1), 85–100.CrossRefGoogle Scholar
  23. Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. Neuroimage, 17(3), 1394–1402.PubMedCrossRefGoogle Scholar
  24. Cabeza, R., & Dennis, N. A. (2013). In D. T. Stuss, R. T. Knight (Eds.), Frontal lobes and aging: Deterioration and compensation in principles of frontal lobe function (2nd ed.).Google Scholar
  25. Cabeza, R., McIntosh, A. R., Tulving, E., Nyberg, L., & Grady, C. L. (1997). Age-related differences in effective neural connectivity during encoding and recall. NeuroReport, 8, 3479–3483.PubMedCrossRefGoogle Scholar
  26. Ceravolo, R., Pagni, C., Tognoni, G., & Bonuccelli, U. (2012). The epidemiology and clinical manifestations of dysexecutive syndrome in Parkinson’s disease. Frontiers in Neurology, 3.  https://doi.org/10.3389/fneur.2012.00159.
  27. Chan, R. C. (2001). Dysexecutive symptoms among a non-clinical sample: A study with the use of the Dysexecutive Questionnaire. British Journal of Psychology, 92(3), 551–565.PubMedCrossRefGoogle Scholar
  28. Clark, L. J., Gatz, M., Zheng, L., Chen, Y. L., McCleary, C., & Mack, W. J. (2009). Longitudinal verbal fluency in normal aging, preclinical, and prevalent Alzheimer’s disease. American Journal of Alzheimer’s Disease & Other Dementias®, 24(6), 461–468.Google Scholar
  29. Crawford, J. R., Bryan, J., Luszcz, M. A., Obonsawin, M. C., & Stewart, L. (2000). The executive decline hypothesis of cognitive aging: Do executive deficits qualify as differential deficits and do they mediate age-related memory decline? Aging, Neuropsychology, and Cognition, 7(1), 9–31.CrossRefGoogle Scholar
  30. Daigneault, S., Braun, C. M., & Whitaker, H. A. (1992). Early effects of normal aging on perseverative and non-perseverative prefrontal measures. Developmental Neuropsychology, 8(1), 99–114.CrossRefGoogle Scholar
  31. Dolcos, F., Wang, L., & Mather, M. (2014). Current research and emerging directions in emotion-cognition interactions. Frontiers in Integrative Neuroscience, 8.  https://doi.org/10.3389/fnint.2014.00083.
  32. Emery, O. B. (1985). Language and aging. Experimental Aging Research, 11(1), 3–60.PubMedCrossRefGoogle Scholar
  33. Fisk, J. E., & Sharp, C. A. (2004). Age-related impairment in executive functioning: Updating, inhibition, shifting, and access. Journal of Clinical and Experimental Neuropsychology, 26(7), 874–890.PubMedCrossRefGoogle Scholar
  34. Fisk, J. E., & Warr, P. (1996). Age and working memory: The role of perceptual speed, the central executive, and the phonological loop. Psychology and Aging, 11(2), 316–323.PubMedCrossRefGoogle Scholar
  35. Foldi, N. S., Helm-Estabrooks, N., Redfield, J., & Nickel, D. G. (2003). Perseveration in normal aging: A comparison of perseveration rates on design fluency and verbal generative tasks. Aging, Neuropsychology, and Cognition, 10(4), 268–280.  https://doi.org/10.1076/anec.10.4.268.28970.CrossRefGoogle Scholar
  36. Foltynie, T., Brayne, C. E. G., Robbins, T. W., & Barker, R. A. (2004). The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain: A Journal of Neurology, 127(Pt 3), 550–560.  https://doi.org/10.1093/brain/awh067.PubMedCrossRefGoogle Scholar
  37. Gaál, Z. A., & Czigler, I. (2015). Age-related processing strategies and go–nogo effects in task-switching: an ERP study. Frontiers in Human Neuroscience, 9.  https://doi.org/10.3389/fnhum.2015.00177.
  38. Gansler, D. A., Huey, E. D., Pan, J. J., Wasserman, E., & Grafman, J. H. (2017). Assessing the dysexecutive syndrome in dementia. Journal of Neurology, Neurosurgery and Psychiatry, 88(3), 254–261.  https://doi.org/10.1136/jnnp-2016-313576.PubMedCrossRefGoogle Scholar
  39. Godefroy, O., Azouvi, P., Robert, P., Roussel, M., LeGall, D., Meulemans, T., & Groupe de Réflexion sur l’Evaluation des Fonctions Exécutives Study Group. (2010). Dysexecutive syndrome: diagnostic criteria and validation study. Annals of Neurology, 68(6), 855–864.  https://doi.org/10.1002/ana.22117.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Godefroy, O., Bakchine, S., Verny, M., Delabrousse-Mayoux, J.-P., Roussel, M., Pere, J.-J., & REFLEX study group (2016). Characteristics of Alzheimer’s disease patients with severe executive disorders. Journal of Alzheimer’s Disease: JAD, 51(3), 815–825.  https://doi.org/10.3233/jad-150971.
  41. Godefroy, O., Barbay, M., Andriuta, D., Tir, M., & Roussel, M. (2017). Global hypoactivity and apathy. In A. Verdelho & M. Gonçalves-Pereira (Eds.), Neuropsychiatric symptoms of cognitive impairment and dementia (pp. 71–91). Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-39138-0_5.Google Scholar
  42. Godefroy, O., Martinaud, O., Narme, P., Joseph, P.-A., Mosca, C., Lhommée, E., … Roussel, M. (2018). Dysexecutive disorders and their diagnosis: A position paper. Cortex, 109, 322–335.  https://doi.org/10.1016/j.cortex.2018.09.026.PubMedCrossRefGoogle Scholar
  43. Gold, B. T., Powell, D. K., Xuan, L., Jicha, G. A., & Smith, C. D. (2010). Age-related slowing of task switching is associated with decreased integrity of frontoparietal white matter. Neurobiology of Aging, 31(3), 512.  https://doi.org/10.1016/j.neurobiolaging.2008.04.005.PubMedCrossRefGoogle Scholar
  44. Grant, D. A., & Berg, E. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. Journal of Experimental Psychology, 38(4), 404.PubMedCrossRefGoogle Scholar
  45. Gruszka, A., Hampshire, A., Barker, R. A., & Owen, A. M. (2017). Normal aging and Parkinson’s disease are associated with the functional decline of distinct frontal-striatal circuits. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 93, 178–192.  https://doi.org/10.1016/j.cortex.2017.05.020.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Haaland, K. Y., Vranes, L. F., Goodwin, J. S., & Garry, P. J. (1987). Wisconsin card sort test performance in a healthy elderly population. Journal of Gerontology, 42(3), 345–346.PubMedCrossRefGoogle Scholar
  47. Hanna-Pladdy, B. (2007). Dysexecutive syndromes in neurologic disease. Journal of Neurologic Physical Therapy: JNPT, 31(3), 119–127.  https://doi.org/10.1097/NPT.0b013e31814a63c2.PubMedCrossRefGoogle Scholar
  48. Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In Psychology of learning and motivation (Vol. 22, pp. 193–225). Academic Press.Google Scholar
  49. Heaton, R. K., Chelune, G. J., Talley, J. L., Kay, G. G., & Curtiss, G. (1993). Wisconsin card sorting test manual: Revised and expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
  50. Ho, M. C., Hsu, Y. C., Lu, M. L., Gossop, M., & Chen, V. C. H. (2018). ‘Cool’ and ‘Hot’ executive functions in suicide attempters with major depressive disorder. Journal of Affective Disorders, 235, 332–340.PubMedCrossRefGoogle Scholar
  51. Jurado, M. B., & Rosselli, M. (2007). The elusive nature of executive functions: A review of our current understanding. Neuropsychology Review, 17, 213–233.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kamei, S., Hara, M., Serizawa, K., Murakami, M., Mizutani, T., Ishiburo, M., … Hirayanagi, K. (2008). Executive dysfunction using behavioral assessment of the dysexecutive syndrome in Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 23(4), 566–573.  https://doi.org/10.1002/mds.21890.PubMedCrossRefGoogle Scholar
  53. Karzmark, P., Llanes, S., Tan, S., Deutsch, G., & Zeifert, P. (2012). Comparison of the frontal systems behavior scale and neuropsychological tests of executive functioning in predicting instrumental activities of daily living. Applied Neuropsychology: Adult, 19(2), 81–85.CrossRefGoogle Scholar
  54. Kennedy, K. M., & Raz, N. (2015). Normal aging of the brain. Brain mapping: An encyclopedic reference, 3, 603–617.CrossRefGoogle Scholar
  55. Kerr, A., & Zelazo, P. D. (2004). Development of “hot” executive function: The children’s gambling task. Brain and Cognition, 55(1), 148–157.  https://doi.org/10.1016/S0278-2626(03)00275-6.PubMedCrossRefGoogle Scholar
  56. Kortte, K. B., Horner, M. D., & Windham, W. K. (2002). The trail making test, part B: cognitive flexibility or ability to maintain set? Applied Neuropsychology, 9(2), 106–109.PubMedCrossRefGoogle Scholar
  57. Laguë-Beauvais, M., Brunet, J., Gagnon, L., Lesage, F., & Bherer, L. (2013). A fNIRS investigation of switching and inhibition during the modified Stroop task in younger and older adults. NeuroImage, 64, 485–495.  https://doi.org/10.1016/j.neuroimage.2012.09.042.PubMedCrossRefGoogle Scholar
  58. Lamar, M., Price, C. C., Giovannetti, T., Swenson, R., & Libon, D. J. (2010). The dysexecutive syndrome associated with ischaemic vascular disease and related subcortical neuropathology: A Boston process approach. Behavioural Neurology, 22(1–2), 53–62.  https://doi.org/10.3233/BEN-2009-0237.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lezak, M., Howieson, D. B., & Loring, D. W. (2004). Executive functions and motor performance. Neuropsychological assessment (pp. 611–646). Oxford: Oxford University Press.Google Scholar
  60. Liebermann, D., Ploner, C. J., Kraft, A., Kopp, U. A., & Ostendorf, F. (2013). A dysexecutive syndrome of the medial thalamus. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 49(1), 40–49.  https://doi.org/10.1016/j.cortex.2011.11.005.PubMedCrossRefGoogle Scholar
  61. Lindberg, O. (2012). The aging frontal lobe in health and disease: A structural magnetic resonance imaging study. Inst för neurobiologi, vårdvetenskap och samhälle/Dept of Neurobiology, Care Sciences and Society.Google Scholar
  62. Loonstra, A. S., Tarlow, A. R., & Sellers, A. H. (2001). COWAT metanorms across age, education, and gender. Applied Neuropsychology, 8(3), 161–166.  https://doi.org/10.1207/S15324826AN0803_5.PubMedCrossRefGoogle Scholar
  63. Luria, A. R. (1976). The working brain: An introduction to neuropsychology. USA: Basic Books.Google Scholar
  64. Mack, W. J., Freed, D. M., Williams, B. W., & Henderson, V. W. (1992). Boston naming test: Shortened versions for use in Alzheimer’s disease. Journal of Gerontology, 47(3), P154–P158.PubMedCrossRefGoogle Scholar
  65. Madden, D. J., Costello, M. C., Dennis, N. A., Davis, S. W., Shepler, A. M., Spaniol, J., … & Cabeza, R. (2010). Adult age differences in functional connectivity during executive control. Neuroimage, 52(2), 643–657.Google Scholar
  66. Meinzer, M., Flaisch, T., Wilser, L., Eulitz, C., Rockstroh, B., Conway, T., … & Crosson, B. (2009). Neural signatures of semantic and phonemic fluency in young and old adults. Journal of Cognitive Neuroscience, 21(10), 2007–2018.Google Scholar
  67. Meinzer, M., Seeds, L., Flaisch, T., Harnish, S., Cohen, M. L., McGregor, K., … & Crosson, B. (2012). Impact of changed positive and negative task-related brain activity on word-retrieval in aging. Neurobiology of Aging, 33(4), 656–669.Google Scholar
  68. Mejía, S., Pineda, D., Alvarez, L. M., & Ardila, A. (1998). Individual differences in memory Anid executive function abilities during normal aging. International Journal of Neuroscience, 95(3–4), 271–284.PubMedCrossRefGoogle Scholar
  69. Mittenberg, W., Seidenberg, M., O’Leary, D. S., & DiGiulio, D. V. (1989). Changes in cerebral functioning associated with normal aging. Journal of Clinical and Experimental Neuropsychology, 11, 918–932.PubMedCrossRefGoogle Scholar
  70. Morris, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., van Belle, G., Fillenbaum, G., … Clark, C. (1989). The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 1159–1165.  https://doi.org/10.1212/wnl.39.9.1159.CrossRefGoogle Scholar
  71. Offenbach, S. I. (1974). A developmental study of hypothesis testing and cue selection strategies. Developmental Psychology, 10, 484–490.CrossRefGoogle Scholar
  72. Ossenkoppele, R., Pijnenburg, Y. A. L., Perry, D. C., Cohn-Sheehy, B. I., Scheltens, N. M. E., Vogel, J. W., … Rabinovici, G. D. (2015). The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain: A Journal of Neurology, 138(Pt 9), 2732–2749.  https://doi.org/10.1093/brain/awv191.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Oveisgharan, S., & Hachinski, V. (2015). Executive dysfunction is a strong stroke predictor. Journal of the Neurological Sciences, 349(1–2), 161–167.  https://doi.org/10.1016/j.jns.2015.01.010.PubMedCrossRefGoogle Scholar
  74. Passingham, R. E. (1993). Oxford psychology series, No. 21. The frontal lobes and voluntary action. New York, NY, US: Oxford University Press.Google Scholar
  75. Peter, J., Kaiser, J., Landerer, V., Köstering, L., Kaller, C. P., Heimbach, B., et al. (2016). Category and design fluency in mild cognitive impairment: Performance, strategy use, and neural correlates. Neuropsychologia, 93, 21–29.PubMedCrossRefGoogle Scholar
  76. Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985–1992.  https://doi.org/10.1001/archneur.58.12.1985.PubMedCrossRefGoogle Scholar
  77. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.PubMedCrossRefGoogle Scholar
  78. Phillips, L. H., Kliegel, M., & Martin, M. (2006). Age and planning tasks: the influence of ecological validity. International Journal of Aging and Human Development, 62(2), 175–184.  https://doi.org/10.2190/EM1W-HAYC-TMLM-WW8X.PubMedCrossRefGoogle Scholar
  79. Poletti, M., Cavallo, M., & Adenzato, M. (2017). Detecting dysexecutive syndrome in neurodegenerative diseases: Are we using an appropriate approach and effective diagnostic tools? Journal of Neurology, Neurosurgery and Psychiatry, 88(3), 195.  https://doi.org/10.1136/jnnp-2016-314744.PubMedCrossRefGoogle Scholar
  80. Raz, N., & Daugherty, A. M. (2018). Pathways to brain aging and their modifiers: Free-radical-induced energetic and neural decline in senescence (FRIENDS) model-A mini-review. Gerontology, 64(1), 49–57.PubMedCrossRefGoogle Scholar
  81. Regard, M., Strauss, E., & Knapp, P. (1982). Children’s production on verbal and non-verbal fluency tasks. Perceptual and Motor Skills, 55, 839–844.  https://doi.org/10.2466/pms.1982.55.3.839.PubMedCrossRefGoogle Scholar
  82. Reitan, R., & Wolfson, D. (1993). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation. Tucson, AZ: Neuropsychology Press.Google Scholar
  83. Ridderinkhof, K. R., Span, M. M., & Van Der Molen, M. W. (2002). Perseverative behavior and adaptive control in older adults: Performance monitoring, rule induction, and set shifting. Brain and Cognition, 49(3), 382–401.PubMedCrossRefGoogle Scholar
  84. Rodríguez-Aranda, C., & Martinussen, M. (2006). Age-related differences in performance of phonemic verbal fluency measured by Controlled Oral Word Association Task (COWAT): A meta-analytic study. Developmental Neuropsychology, 30(2), 697–717.PubMedCrossRefGoogle Scholar
  85. Rodríguez-Aranda, C., & Sundet, K. (2006). The frontal hypothesis of cognitive aging: Factor structure and age effects on four frontal tests among healthy individuals. The Journal of Genetic Psychology, 167(3), 269–287.PubMedCrossRefGoogle Scholar
  86. Rönnlund, M., Lövdén, M., & Nilsson, L. G. (2001). Adult age differences in Tower of Hanoi performance: Influence from demographic and cognitive variables. Aging, Neuropsychology, and Cognition, 8(4), 269–283.CrossRefGoogle Scholar
  87. Rönnlund, M., Lövdén, M., & Nilsson, L. G. (2007). Cross-sectional versus longitudinal age gradients of Tower of Hanoi performance: The role of practice effects and cohort differences in education. Aging, Neuropsychology, and Cognition, 15(1), 40–67.CrossRefGoogle Scholar
  88. Rosselli, M., & Jurado, M. B. (2013). Las funciones ejecutivas y el lóbulo frontal en el envejecimiento típico y atípico. In J. Tirapu Ustárroz, A. García-Molina, M. Ríos Lago (Eds.), Neuropsicología del córtex prefrontal y de las funciones ejecutivas. Barcelona, España: Viguera Editores.Google Scholar
  89. Rosselli, M., Tappen, R., Williams, C., Salvatierra, J., & Zoller, Y. (2009). Level of education and category fluency task among Spanish speaking elders: number of words, clustering, and switching strategies. Aging, Neuropsychology, and Cognition, 16(6), 721–744.CrossRefGoogle Scholar
  90. Roussel, M., Lhommée, E., Narme, P., Czernecki, V., Gall, D. L., Krystkowiak, P., … & GREFEX study group. (2017). Dysexecutive syndrome in Parkinson’s disease: the GREFEX study. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 24(5), 496–507.  https://doi.org/10.1080/13825585.2016.1226248.CrossRefGoogle Scholar
  91. Sachdev, P. S., Chen, X., Brodaty, H., Thompson, C., Altendorf, A., & Wen, W. (2009). The determinants and longitudinal course of post-stroke mild cognitive impairment. Journal of the International Neuropsychological Society: JINS, 15(6), 915–923.  https://doi.org/10.1017/S1355617709990579.PubMedCrossRefGoogle Scholar
  92. Salat, D. H. (2014). Diffusion tensor imaging in the study of aging and age-associated neural disease. In Diffusion MRI (pp. 257–281). Academic Press.Google Scholar
  93. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428.PubMedCrossRefGoogle Scholar
  94. Shallice, T., & Evans, M. E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex, 14(2), 294–303.PubMedCrossRefGoogle Scholar
  95. Slagter, H. A., Weissman, D. H., Giesbrecht, B., Kenemans, J. L., Mangun, G. R., Kok, A., et al. (2006). Brain regions activated by endogenous preparatory set shifting as revealed by fMRI. Cognitive, Affective, & Behavioral Neuroscience, 6(3), 175–189.  https://doi.org/10.3758/CABN.6.3.175.CrossRefGoogle Scholar
  96. Sorel, O., & Pennequin, V. (2008). Aging of the planning process: The role of executive functioning. Brain and Cognition, 66(2), 196–201.PubMedCrossRefGoogle Scholar
  97. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643.CrossRefGoogle Scholar
  98. Sudo, F. K., Alves, C. E. O., Alves, G. S., Ericeira-Valente, L., Tiel, C., Moreira, D. M., … Engelhardt, E. (2012). Dysexecutive syndrome and cerebrovascular disease in non-amnestic mild cognitive impairment: A systematic review of the literature. Dementia & Neuropsychologia, 6(3), 145–151.  https://doi.org/10.1590/s1980-57642012dn06030006.CrossRefGoogle Scholar
  99. Sullivan, E. V., Rohlfing, T., & Pfefferbaum, A. (2010). Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: Relations to timed performance. Neurobiology of Aging, 31(3), 464–481.PubMedCrossRefGoogle Scholar
  100. Tas, A. C., Luck, S. J., & Hollingworth, A. (2016). The relationship between visual attention and visual working memory encoding: A dissociation between covert and overt orienting. Journal of Experimental Psychology. Human Perception and Performance, 42(8), 1121–1138.  https://doi.org/10.1037/xhp0000212.PubMedGoogle Scholar
  101. Thomson, D. R., & Hasher, L. (2017). On the preservation of vigilant attention to semantic information in healthy aging. Experimental Brain Research, 235(7), 2287–2300.  https://doi.org/10.1007/s00221-017-4969-5.PubMedCrossRefGoogle Scholar
  102. Torralva, T., Roca, M., Gleichgerrcht, E., Bekinschtein, T., & Manes, F. (2009). A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. Brain: A Journal of Neurology, 132(Pt 5), 1299–1309.  https://doi.org/10.1093/brain/awp041.PubMedCrossRefGoogle Scholar
  103. Van der Elst, W., Van Boxtel, M. P., Van Breukelen, G. J., & Jolles, J. (2006). The Stroop color-word test: Influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment, 13(1), 62–79.PubMedCrossRefGoogle Scholar
  104. van Reekum, C. M., Schaefer, S. M., Lapate, R. C., Norris, C. J., Tun, P. A., Lachman, M. E., … Davidson, R. J. (2018). Aging is associated with a prefrontal lateral-medial shift during picture-induced negative affect. Social Cognitive and Affective Neuroscience, 13(2), 156–163.  https://doi.org/10.1093/scan/nsx144.PubMedPubMedCentralCrossRefGoogle Scholar
  105. West, R., & Alain, C. (2000). Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37(2), 179–189.PubMedCrossRefGoogle Scholar
  106. West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272–292.PubMedCrossRefGoogle Scholar
  107. West, R., & Baylis, G. C. (1998). Effects of increased response dominance and contextual disintegration on the Stroop interference effect in older adults. Psychology and Aging, 13(2), 206–217.  https://doi.org/10.1037/0882-7974.13.2.206.PubMedCrossRefGoogle Scholar
  108. Williams, L. M., Kemp, A. H., Felmingham, K., Barton, M., Olivieri, G., Peduto, A., … Bryant, R. A. (2006). Trauma modulates amygdala and medial prefrontal responses to consciously attended fear. NeuroImage, 29(2), 347–357.  https://doi.org/10.1016/j.neuroimage.2005.03.047.PubMedCrossRefGoogle Scholar
  109. Williams-Gray, C. H., Foltynie, T., Brayne, C. E. G., Robbins, T. W., & Barker, R. A. (2007). Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain: A Journal of Neurology, 130(Pt 7), 1787–1798.  https://doi.org/10.1093/brain/awm111.PubMedCrossRefGoogle Scholar
  110. Wong, S., Strudwick, J., Devenney, E., Hodges, J. R., Piguet, O., & Kumfor, F. (2019). Frontal variant of Alzheimer’s disease masquerading as behavioural-variant frontotemporal dementia: A case study comparison. Neurocase, 1–11.Google Scholar
  111. Zook, N., Welsh, M. C., & Ewing, V. (2006). Performance of healthy, older adults on the Tower of London revised: Associations with verbal and nonverbal abilities. Aging, Neuropsychology, and Cognition, 13(1), 1–19.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PsychologyFlorida Atlantic UniversityDavieUSA

Personalised recommendations