Advertisement

Executive Dysfunction Associated with Substance Abuse

  • Olga InozemtsevaEmail author
  • Edgar Mejía Núñez
Chapter

Abstract

Executive dysfunction is prevalent in substance use disorder. Deficits in working memory, flexibility, decision-making, everyday life executive functioning, emotional, and behavioral regulation have been reported. However, the greatest executive deficit in substance use disorder is in inhibitory control. Disruption in the behavior inhibitory control has been considered, in several theoretical models, as one of the main mechanisms of addictive behavior. Deficits in inhibitory control and impulsivity traits may act as a risk factor for acquisition, maintenance of addiction, as well as for the transition from recreational use of substance to dependence. The presence of impulsive personality traits in substance dependents allows us to suppose about the existence of endophenotypes. The identification of the endophenotypes could be important for the prevention and rehabilitation of substance use disorder. The executive dysfunction in substance users has been related to disruption in the functioning of areas involved on dopaminergic system, including prefrontal cortex, anterior cingulate, basal ganglia, among others.

Keywords

Executive dysfunction Inhibitory control Impulsivity Behavioral control Dysexecutive syndrome 

References

  1. Aharonovich, E., Hasin, D. S., Brooks, A. C., Liu, X., Bisaga, A., & Nunes, E. V. (2006). Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug and Alcohol Dependence, 81(3), 313–322.  https://doi.org/10.1016/j.drugalcdep.2005.08.003.CrossRefGoogle Scholar
  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.CrossRefGoogle Scholar
  3. Baldacchino, A., Balfour, D. J. K., Passetti, F., Humphris, G., & Matthews, K. (2012). Neuropsychological consequences of chronic opioid use: A quantitative review and meta-analysis. Neuroscience and Biobehavioral Reviews, 36(9), 2056–2068.  https://doi.org/10.1016/j.neubiorev.2012.06.006.CrossRefPubMedGoogle Scholar
  4. Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44–79.  https://doi.org/10.1016/j.pneurobio.2013.06.005.CrossRefPubMedGoogle Scholar
  5. Barry, D., & Petry, N. M. (2008). Predictors of decision-making on the Iowa Gambling Task: Independent effects of life time history of substance use disorders and performance on the Trail Making Test. Brain and Cognition, 66(3), 243–252.  https://doi.org/10.1016/j.bandc.2007.09.001.CrossRefGoogle Scholar
  6. Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65–94.  https://doi.org/10.1037/0033-2909.121.1.65.CrossRefGoogle Scholar
  7. Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8(11), 1458–1463.  https://doi.org/10.1038/nn1584.CrossRefPubMedGoogle Scholar
  8. Bell, R. P., Foxe, J. J., Ross, L. A., & Garavan, H. (2014). Intact inhibitory control processes in abstinent drug abusers (I): A functional neuroimaging study in former cocaine addicts. Neuropharmacology, 82, 143–150.  https://doi.org/10.1016/j.neuropharm.2013.02.018.CrossRefPubMedGoogle Scholar
  9. Bjork, J. M., Hommer, D. W., Grant, S. J., & Danube, C. (2004). Impulsivity in abstinent alcohol-dependent patients: Relation to control subjects and type 1–/type 2–like traits. Alcohol, 34(2–3), 133–150.  https://doi.org/10.1016/j.alcohol.2004.06.012.CrossRefPubMedGoogle Scholar
  10. Blanco-Hinojo, L., Pujol, J., Harrison, B. J., Macià, D., Batalla, A., Nogué, S., et al. (2016). Attenuated frontal and sensory inputs to the basal ganglia in cannabis users. Addiction Biology, 22(4), 1036–1047.  https://doi.org/10.1111/adb.12370.CrossRefPubMedGoogle Scholar
  11. Bolla, K. I., Brown, K., Eldreth, D., Tate, K., & Cadet, J. L. (2002). Dose-related neurocognitive effects of marijuana use. Neurology, 59(9), 1337–1343.  https://doi.org/10.1212/01.wnl.0000031422.66442.4.CrossRefPubMedGoogle Scholar
  12. Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113.  https://doi.org/10.1016/j.tics.2011.12.010.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brown, T. G., Seraganian, P., & Tremblay, J. (1993). Alcohol and cocaine abusers 6 months after traditional treatment: Do they fare as well as problem drinkers? Journal of Substance Abuse Treatment, 10, 545–552.  https://doi.org/10.1016/07405472(93)90058-a.CrossRefPubMedGoogle Scholar
  14. Chen, D., Liu, F., Shang, Q., Song, X., Miao, X., & Wang, Z. (2011). Association between polymorphisms of DRD2 and DRD4 and opioid dependence: Evidence from the current studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156B(6), 661–670.  https://doi.org/10.1002/ajmg.b.31208.CrossRefGoogle Scholar
  15. Crews, F. T., & Boettiger, C. A. (2009). Impulsivity, frontal lobes and risk for addiction. Pharmacology, Biochemistry and Behavior, 93(3), 237–247.  https://doi.org/10.1016/j.pbb.2009.04.018.CrossRefPubMedGoogle Scholar
  16. Cox, W. M., Fadardi, J. S., & Pothos, E. M. (2006). The addiction-Stroop test: Theoretical considerations and procedural recommendations. Psychological Bulletin, 132(3), 443–476.  https://doi.org/10.1037/0033-2909.132.3.443.CrossRefPubMedGoogle Scholar
  17. Dean, A. C., Groman, S. M., Morales, A. M., & London, E. D. (2013). An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology, 38(2), 259–274.  https://doi.org/10.1038/npp.2012.179.CrossRefPubMedGoogle Scholar
  18. Dempster, F. N., & Corkill, A. J. (1999). Interference and inhibition in cognition and behavior: Unifying themes for educational psychology. Educational Psychology Review, 11(1), 1–88.  https://doi.org/10.1023/a:1021992632168.CrossRefGoogle Scholar
  19. Di Sclafani, V., Tolou-Shams, M., Price, L. J., & Fein, G. (2002). Neuropsychological performance of individuals dependent on crack-cocaine, or crack-cocaine and alcohol, at 6 weeks and 6 months of abstinence. Drug and Alcohol Dependence, 66, 161–171.  https://doi.org/10.1016/s0376-8716(01)00197-1.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dias, N. R., Schmitz, J. M., Rathnayaka, N., Red, S. D., Sereno, A. B., Moeller, F. G., et al. (2015). Anti-saccade error rates as a measure of attentional bias in cocaine dependent subjects. Behavioural Brain Research, 292, 493–499.  https://doi.org/10.1016/j.bbr.2015.07.006.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dick, D. M., Wang, J. C., Plunkett, J., Aliev, F., Hinrichs, A., Bertelsen, S., Budde, J.P., Goldstein, E.L., Kaplan, D., Edenberg, H.J., Nurnberger, J. Jr., Hesselbrock, V., Schuckit, M., Kuperman, S., Tischfield, J., Porjesz, B., Begleiter, H., Bierut, L.J., & Goate, A. (2007). Family-based association analyses of alcohol dependence phenotypes across DRD2 and neighboring gene ANKK1. Alcoholism: Clinical and Experimental Research, 31(10), 1645–1653.  https://doi.org/10.1111/j.1530-0277.2007.00470.x.CrossRefGoogle Scholar
  22. Doehring, A., von Hentig, N., Graff, J., Salamat, S., Schmidt, M., Geisslinger, G., et al. (2009). Genetic variants altering dopamine D2 receptor expression or function modulate the risk of opiate addiction and the dosage requirements of methadone substitution. Pharmacogenetics and Genomics, 19(6), 407–414.  https://doi.org/10.1097/fpc.0b013e328320a3fd.CrossRefPubMedGoogle Scholar
  23. Dougherty, D. M., Mathias, C. W., Dawes, M. A., Furr, R. M., Charles, N. E., Liguori, A., et al. (2012). Impulsivity, attention, memory, and decision-making among adolescent marijuana users. Psychopharmacology (Berl), 226(2), 307–319.  https://doi.org/10.1007/s00213-012-2908-5.CrossRefGoogle Scholar
  24. Duaux, E., Gorwood, P., Griffon, N., Bourdel, M. C., Sautel, F., Sokoloff, V. P., et al. (1998). Homozygosity at the dopamine D3 receptor gene is associated with opiate dependence. Molecular Psychiatry, 1(4), 333–336.CrossRefGoogle Scholar
  25. Ersche, K. D., Jones, P. S., Williams, G. B., Smith, D. G., Bullmore, E. T., & Robbins, T. W. (2013). Distinctive personality traits and neural correlates associated with stimulant drug use versus familial risk of stimulant dependence. Biological Psychiatry, 74(2), 137–144.CrossRefGoogle Scholar
  26. Ersche, K. D., Turton, A. J., Chamberlain, S. R., Müller, U., Bullmore, E. T., & Robbins, T. W. (2012). Cognitive dysfunction and anxious-impulsive personality traits are endophenotypes for drug dependence. American Journal of Psychiatry, 169(9), 926–936.CrossRefGoogle Scholar
  27. Ersche, K. D., Turton, A. J., Pradhan, S., Bullmore, E. T., & Robbins, T. W. (2010). Drug addiction endophenotypes: Impulsive versus sensation-seeking personality traits. Biological Psychiatry, 68(8), 770–773.  https://doi.org/10.1016/j.biopsych.2010.06.015.CrossRefGoogle Scholar
  28. Fernández-Serrano, M. J., Pérez-García, M., Perales, J. C., & Verdejo-García, A. (2010). Prevalence of executive dysfunction in cocaine, heroin and alcohol users enrolled in therapeutic communities. European Journal of Pharmacology, 626(1), 104–112.  https://doi.org/10.1016/j.ejphar.2009.10.019.CrossRefPubMedGoogle Scholar
  29. Field, M., Mogg, K., Mann, B., Bennett, G. A., & Bradley, B. P. (2013). Attentional biases in abstinent alcoholics and their association with craving. Psychology of Addictive Behaviors, 27(1), 71–80.  https://doi.org/10.1037/a0029626.CrossRefPubMedGoogle Scholar
  30. Fridberg, D. J., Queller, S., Ahn, W.-Y., Kim, W., Bishara, A. J., Busemeyer, J. R., et al. (2010). Cognitive mechanisms underlying risky decision-making in chronic cannabis users. Journal of Mathematical Psychology, 54(1), 28–38.  https://doi.org/10.1016/j.jmp.2009.10.002.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133(1), 101–135.  https://doi.org/10.1037/0096-3445.133.1.101.CrossRefGoogle Scholar
  32. Garavan, H., & Hester, R. (2007). The role of cognitive control in cocaine dependence. Neuropsychology Review, 17(3), 337–345.  https://doi.org/10.1007/s11065-007-9034-x.CrossRefPubMedGoogle Scholar
  33. George, O., & Koob, G. F. (2010). Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neuroscience and Biobehavioral Reviews, 35(2), 232–247.  https://doi.org/10.1016/j.neubiorev.2010.05.002.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Godefroy, O., Azouvi, P., Robert, P., Roussel, M., LeGall, D., & Meulemans, T. (2010). Dysexecutive syndrome: Diagnostic criteria and validation study. Annals of Neurology, 68(6), 855–864.  https://doi.org/10.1002/ana.22117.CrossRefPubMedGoogle Scholar
  35. Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159(10), 1642–1652.  https://doi.org/10.1176/appi.ajp.159.10.1642.CrossRefPubMedGoogle Scholar
  36. Gonzalez, R., Schuster, R. M., Mermelstein, R. J., Vassileva, J., Martin, E. M., & Diviak, K. R. (2012). Performance of young adult cannabis users on neurocognitive measures of impulsive behavior and their relationship to symptoms of cannabis use disorders. Journal of Clinical and Experimental Neuropsychology, 34(9), 962–976.  https://doi.org/10.1080/13803395.2012.703642.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gorwood, P., Le Strat, Y., Ramoz, N., Dubertret, C., Moalic, J.-M., & Simonneau, M. (2012). Genetics of dopamine receptors and drug addiction. Human Genetics, 131(6), 803–822.  https://doi.org/10.1007/s00439-012-1145-7.CrossRefPubMedGoogle Scholar
  38. Hagen, E., Erga, A. H., Hagen, K. P., Nesvåg, S. M., McKay, J. R., Lundervold, A. J., et al. (2016). Assessment of executive function in patients with substance use disorder: A comparison of inventory- and performance-based assessment. Journal of Substance Abuse Treatment, 66, 1–8.  https://doi.org/10.1016/j.jsat.2016.02.010.CrossRefPubMedGoogle Scholar
  39. Han, D. H., Yoon, S. J., Sung, Y. H., Lee, Y. S., Kee, B. S., Lyoo, I. K., et al. (2008). A preliminary study: Novelty seeking, frontal executive function, and dopamine receptor (D2) TaqI A gene polymorphism in patients with methamphetamine dependence. Comprehensive Psychiatry, 49(4), 387–392.CrossRefGoogle Scholar
  40. Hekmat, S., Alam Mehrjerdi, Z., Moradi, A., Ekhtiari, H., & Bakhshi, S. (2011). Cognitive flexibility, attention and speed of mental processing in opioid and methamphetamine addicts in comparison with non-addicts. Basic and Clinical Neuroscience, 2(2), 12–19.Google Scholar
  41. Hester, R., Bell, R. P., Foxe, J. J., & Garavan, H. (2013). The influence of monetary punishment on cognitive control in abstinent cocaine-users. Drug and Alcohol Dependence, 133(1), 86–93.  https://doi.org/10.1016/j.drugalcdep.2013.05.027.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Huang, W., Ma, J. Z., Payne, T. J., Beuten, J., Dupont, R. T., & Li, M. D. (2008a). Significant association of DRD1 with nicotine dependence. Human Genetics, 123(2), 133–140.  https://doi.org/10.1007/s00439-007-0453-9.CrossRefPubMedGoogle Scholar
  43. Huang, W., Payne, T. J., Ma, J. Z., & Li, M. D. (2008b). A functional polymorphism, rs6280, in DRD3is significantly associated with nicotine dependence in European-American smokers. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B(7), 1109–1115.  https://doi.org/10.1002/ajmg.b.30731.CrossRefGoogle Scholar
  44. Huestegge, L., Radach, R., & Kunert, H. (2008). Long-term effects of cannabis on oculomotor function in humans. Journal of Psychopharmacology, 23(6), 714–722.  https://doi.org/10.1177/0269881108091601.CrossRefPubMedGoogle Scholar
  45. Inozemtseva, O., Pérez-Solís, L., Matute, E., & Juárez, J. (2016). Differential improvement of executive functions during abstinence in cocaine-dependent patients: A longitudinal study. Substance Use and Misuse, 51(11), 1428–1440.  https://doi.org/10.1080/10826084.2016.1178293.CrossRefPubMedGoogle Scholar
  46. Jansen, J. M., van Holst, R. J., van den Brink, W., Veltman, D. J., Caan, M. W. A., & Goudriaan, A. E. (2014). Brain function during cognitive flexibility and white matter integrity in alcohol-dependent patients, problematic drinkers and healthy controls. Addiction Biology, 20(5), 979–989.  https://doi.org/10.1111/adb.12199.CrossRefPubMedGoogle Scholar
  47. Jentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl), 146(4), 373–390.  https://doi.org/10.1007/pl00005483.CrossRefGoogle Scholar
  48. Johns, S. E., Wang, Q., Straub, L. K., & Moeller, F. G. (2018). Impulsivity and decision making in older and younger cocaine-dependent participants: A preliminary study. The American Journal on Addictions, 27(7), 557–559.  https://doi.org/10.1111/ajad.12806.CrossRefPubMedGoogle Scholar
  49. Kohno, M., Morales, A. M., Ghahremani, D. G., Hellemann, G., & London, E. D. (2014). Risky decision making, prefrontal cortex, and mesocorticolimbic functional connectivity in methamphetamine dependence. JAMA Psychiatry, 71(7), 812.  https://doi.org/10.1001/jamapsychiatry.2014.399.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Leland, D. S., Arce, E., Miller, D. A., & Paulus, M. P. (2008). Anterior cingulate cortex and benefit of predictive cueing on response inhibition in stimulant dependent individuals. Biological Psychiatry, 63(2), 184–190.  https://doi.org/10.1016/j.biopsych.2007.04.031.CrossRefGoogle Scholar
  51. Levran, O., Londono, D., O’Hara, K., Randesi, M., Rotrosen, J., Casadonte, P., et al. (2009). Heroin addiction in African Americans: A hypothesis-driven association study. Genes, Brain and Behavior, 8(5), 531–540.  https://doi.org/10.1111/j.1601-183x.2009.00501.x.CrossRefGoogle Scholar
  52. Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological Assessment (5th ed.). New York, NY, US: Oxford University Press.Google Scholar
  53. London, E. D., Berman, S. M., Voytek, B., Simon, S. L., Mandelkern, M. A., Monterosso, J., et al. (2005). Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers. Biological Psychiatry, 58(10), 770–778.  https://doi.org/10.1016/j.biopsych.2005.04.039.CrossRefPubMedGoogle Scholar
  54. MacKillop, J., Weafer, J., Gray, J. C., Oshri, A., Palmer, A., & de Wit, H. (2016). The latent structure of impulsivity: Impulsive choice, impulsive action, and impulsive personality traits. Psychopharmacology (Berl), 233(18), 3361–3370.  https://doi.org/10.1007/s00213-016-4372-0.CrossRefGoogle Scholar
  55. Malec, J. F., & Moessner, A. M. (2000). Self-awareness, distress and postacute rehabilitation outcome. Rehabilitation Psychology, 45, 227–241.  https://doi.org/10.1037/0090-5550.45.3.227.CrossRefGoogle Scholar
  56. Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a super ordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268.  https://doi.org/10.3758/s13415-011-0083-5.CrossRefGoogle Scholar
  57. Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126(2), 220–246.  https://doi.org/10.1037/0033-2909.126.2.220.CrossRefGoogle Scholar
  58. Núñez Carranza, A. E. & Inozemtseva, O. (2018). Control inhibitorio motor, oculomotor y de interferencia en consumidores crónicos de cannabis (Phd thesis, Instituto de Neurociencias de la Universidad de Guadalajara, Guadalajara, México). From https://www.riudg.udg.mx/handle/20.500.12104/9.
  59. Núñez Mejía, E. J. & Inozemtseva, O. (2017). Control inhibitorio oculomotor en dependientes a psicoestimulantes y su relación con los síntomas conductuales del TDAH en la niñez (Master thesis, Instituto de Neurociencias de la Universidad de Guadalajara, Guadalajara, México). From https://www.riudg.udg.mx/handle/20.500.12104/9.
  60. Pandey, A. K., Ardekani, B. A., Kamarajan, C., Zhang, J., Chorlian, D. B., Byrne, K. N., Pandey, G., Leigh-Meyers, J., Kinreich, S., & Porjesz, B. (2018). Lower prefrontal and hippocampal volume and diffusion tensor imaging differences reflect structural and functional abnormalities in abstinent individuals with alcohol use disorder. Alcoholism: Clinical and Experimental Research, 42(10), 1883–1896  https://doi.org/10.1111/acer.13854.CrossRefGoogle Scholar
  61. Pedrero-Pérez, E. J., Ruiz-Sánchez de León, J. M., Rojo-Mota, G., Llanero-Luque, M., Olivar-Arroyo, A., Bouso-Saiz, J. C., et al. (2009). Spanish version of the dysexecutive questionnaire (DEX-Sp): Psychometric properties in addicts and non-clinical sample. Adicciones, 21(2), 155–166.CrossRefGoogle Scholar
  62. Potvin, S., Stavro, K., Rizkallah, É., & Pelletier, J. (2014). Cocaine and cognition: A systematic quantitative review. Journal of Addiction Medicine, 8(5), 368–376.  https://doi.org/10.1097/adm.0000000000000066.CrossRefPubMedGoogle Scholar
  63. Quednow, B. B., Kühn, K.-U., Hoppe, C., Westheide, J., Maier, W., Daum, I., & Wagner, M. (2006). Elevated impulsivity and impaired decision-making cognition in heavy users of MDMA (“Ecstasy”). Psychopharmacology, 189(4), 517–530.  https://doi.org/10.1007/s00213-005-0256-4.CrossRefGoogle Scholar
  64. Rahman, Q., & Clarke, C. D. (2005). Sex differences in neurocognitive functioning among abstinent recreational cocaine users. Psychopharmacology (Berl), 181(2), 374–380.  https://doi.org/10.1007/s00213-005-2257-8.CrossRefGoogle Scholar
  65. Roberts, W., Fillmore, M. T., & Milich, R. (2011). Linking impulsivity and inhibitory control using manual and oculomotor response inhibition tasks. Acta Psychologica, 138(3), 419–428.  https://doi.org/10.1016/j.actpsy.2011.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Robinson, T. & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews, 18(3), 247–291.  https://doi.org/10.1016/0165-0173(93)90013-p.CrossRefGoogle Scholar
  67. Rosse, R. B., McCarthy, M. F., Alim, T. N., & Deutsch, S. I. (1994). Saccadic distractibility in cocaine dependent patients: A preliminary laboratory exploration of the cocaine-OCD hypothesis. Drug and Alcohol Dependence, 35(1), 25–30.  https://doi.org/10.1016/0376-8716(94)90106-6.CrossRefPubMedGoogle Scholar
  68. Salgado, J. V., Malloy-Diniz, L. F., Campos, V. R., Abrantes, S. S. C., Fuentes, D., Bechara, A., et al. (2009). Neuropsychological assessment of impulsive behavior in abstinent alcohol-dependent subjects. Revista Brasileira de Psiquiatria, 31(1), 4–9.  https://doi.org/10.1590/s1516-44462009000100003.CrossRefPubMedGoogle Scholar
  69. Shao, C., Li, Y., Jiang, K., Zhang, D., Xu, Y., Lin, L., et al. (2006). Dopamine D4 receptor polymorphism modulates cue-elicited heroin craving in Chinese. Psychopharmacology (Berl), 186(2), 185–190.  https://doi.org/10.1007/s00213-006-0375-6.CrossRefGoogle Scholar
  70. Smith, J. L., Mattick, R. P., Jamadar, S. D., & Iredale, J. M. (2014). Deficits in behavioral inhibition in substance abuse and addiction: A meta-analysis. Drug and Alcohol Dependence, 145, 1–33.  https://doi.org/10.1016/j.drugalcdep.2014.08.009.CrossRefPubMedGoogle Scholar
  71. Spronk, D. B., van Wel, J. H. P., Ramaekers, J. G., & Verkes, R. J. (2013). Characterizing the cognitive effects of cocaine: A comprehensive review. Neuroscience and Biobehavioral Reviews, 37(8), 1838–1859.  https://doi.org/10.1016/j.neubiorev.2013.07.003.CrossRefPubMedGoogle Scholar
  72. Taylor, E. M., Murphy, A., Boyapati, V., Ersche, K. D., Flechais, R., Kuchibatla, S., et al. (2016). Impulsivity in abstinent alcohol and polydrug dependence: A multidimensional approach. Psychopharmacology (Berl), 233(8), 1487–1499.  https://doi.org/10.1007/s00213-016-4245-6.CrossRefGoogle Scholar
  73. Tomasi, D., Goldstein, R. Z., Telang, F., Maloney, T., Alia-Klein, N., Caparelli, E. C., & Volkow, N. D. (2007). Widespread disruption in brain activation patterns to a working memory task during cocaine abstinence. Brain Research, 1171, 83–92.  https://doi.org/10.1016/j.brainres.2007.06.102.CrossRefGoogle Scholar
  74. Uhl, G. R., Drgon, T., Johnson, C., & Rose, J. E. (2009). Nicotine abstinence genotyping: Assessing the impact on smoking cessation clinical trials. The Pharmacogenomics Journal, 9(2), 111–115.  https://doi.org/10.1038/tpj.2008.10.CrossRefPubMedGoogle Scholar
  75. Vandenbergh, D. J., O’Connor, R. J., Grant, M. D., Jefferson, A. L., Vogler, G. P., Strasser, A. A., et al. (2007). Dopamine receptor genes (DRD2, DRD3 and DRD4) and gene-gene interactions associated with smoking-related behaviors. Addiction Biology, 12(1), 106–116.  https://doi.org/10.1111/j.1369-1600.2007.00054.x.CrossRefPubMedGoogle Scholar
  76. Verdejo-Garcı́a, A. J., López-Torrecillas, F., de Arcos, F. A., & Pérez-Garcı́a, M. (2005). Differential effects of MDMA, cocaine, and cannabis use severity on distinctive components of the executive functions in polysubstance users: A multiple regression analysis. Addictive Behaviors, 30(1), 89–101.CrossRefGoogle Scholar
  77. Verdejo-García, A., & Pérez-García, M. (2007). Ecological assessment of executive functions in substance dependent individuals. Drug and Alcohol Dependence, 90(1), 48–55.  https://doi.org/10.1016/j.drugalcdep.2007.02.010.CrossRefPubMedGoogle Scholar
  78. Volkow, N. D., Fowler, J. S., & Wang, G. J. (2003). The addicted human brain: Insights from imaging studies. Journal of Clinical Investigation, 111(10), 1444–1451.  https://doi.org/10.1172/jci18533.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wiers, R. W., & Stacy, A. W. (2006). Implicit cognition and addiction. Current Directions in Psychological Science, 15, 6.CrossRefGoogle Scholar
  80. Wilson, B. A., Alderman, N., Burgess, P. W., Emslie, H., & Evans, J. J. (1996). Behavioral Assessment of the Dysexecutive Syndrome. Bury St. Edmunds, UK: Thames Valley Test Company.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Neurociencias, CUCBA; Departamento de Estudios En Educación, CUCSHUniversidad de GuadalajaraGuadalajaraMexico
  2. 2.Instituto de NeurocienciasUniversidad de GuadalajaraGuadalajaraMexico

Personalised recommendations