Advertisement

Correlates of Executive Dysfunction in HIV

  • Roger C. McIntoshEmail author
  • Judy D. Lobo
Chapter

Abstract

Despite advancements in combination antiretroviral therapy rates of mild neurocognitive impairment remain elevated amongst persons living with HIV (PLWH). Concomitant with the greater rate of survival into old age PLWH show accelerated cognitive aging in multiple domains. Executive function is among the domains where early onset of decline is most evident. This chapter will discuss what are known correlates of executive dysfunction in PLWH in this era of antiretroviral therapy. The goal of this chapter is to expand on what is known regarding HIV disease severity and executive dysfunction to provide a more nuanced look at how other central and peripheral biomarkers, psychosocial and behavioral risk factors relate to deficits in inhibition, updating and working memory, cognitive set-shifting, and mental flexibility.

Keywords

HIV-associated neurocognitive disorder Mild neurocognitive disorder Asymptomatic neurocognitive impairment Stress Inflammation Neuroimaging 

References

  1. Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R., & Petersen, R. C. 2011. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. In Mayo Clinic Proceedings, (pp. 876–884). Elsevier.Google Scholar
  2. Antinori, A., Arendt, G., Becker, J., Brew, B., Byrd, D., Cherner, M., et al. (2007). Updated research nosology for HIV-associated neurocognitive disorders. Neurology, 69, 1789–1799.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Azar, M. M., Springer, S. A., Meyer, J. P., & Altice, F. L. (2010). A systematic review of the impact of alcohol use disorders on HIV treatment outcomes, adherence to antiretroviral therapy and health care utilization. Drug and Alcohol Dependence, 112, 178–193.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barha, C. K., Davis, J. C., Falck, R. S., Nagamatsu, L. S., & Liu-Ambrose, T. (2017). Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Frontiers in Neuroendocrinology, 46, 71–85.PubMedCrossRefGoogle Scholar
  5. Baum, M. K., Rafie, C., Lai, S., Sales, S., Page, J. B., & Campa, A. (2010). Alcohol use accelerates HIV disease progression. AIDS Research and Human Retroviruses, 26, 511–518.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bechara, A. (2007). Iowa gambling task. Psychological Assessment Resources.Google Scholar
  7. Bechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18, 428–437.PubMedCrossRefGoogle Scholar
  8. Behnisch, T., Francesconi, W., & Sanna, P. P. (2004). HIV secreted protein Tat prevents long-term potentiation in the hippocampal CA1 region. Brain Research, 1012, 187–189.PubMedCrossRefGoogle Scholar
  9. Bennett, B. A., Rusyniak, D. E., & Hollingsworth, C. K. (1995). HIV-1 gp120-induced neurotoxicity to midbrain dopamine cultures. Brain Research, 705, 168–176.PubMedCrossRefGoogle Scholar
  10. Benos, D. J., McPherson, S., Hahn, B. H., Chaikin, M. A., & Benveniste, E. N. (1994). Cytokines and HIV envelope glycoprotein gp120 stimulate Na+/H+ exchange in astrocytes. Journal of Biological Chemistry, 269, 13811–13816.PubMedGoogle Scholar
  11. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.PubMedCrossRefGoogle Scholar
  12. Bogdanova, Y., Díaz-Santos, M., & Cronin-Golomb, A. (2010). Neurocognitive correlates of alexithymia in asymptomatic individuals with HIV. Neuropsychologia, 48, 1295–1304.PubMedCrossRefGoogle Scholar
  13. Bousman, C., Cherner, M., Atkinson, J., Heaton, R., Grant, I., Everall, I., & Group, H. (2010a). COMT Val158Met polymorphism, executive dysfunction, and sexual risk behavior in the context of HIV infection and methamphetamine dependence. Interdisciplinary Perspectives on Infectious Diseases.Google Scholar
  14. Bousman, C. A., Cherner, M., Glatt, S. J., Atkinson, J. H., Grant, I., Tsuang, M. T., & Everall, I. P. (2010b). Impact of COMT Val158Met on executive functioning in the context of HIV and methamphetamine. Neurobehavioral HIV medicine, 1.Google Scholar
  15. Brack-Werner, R. (1999). Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. Aids, 13, 1–22.PubMedCrossRefGoogle Scholar
  16. Braithwaite, R., Conigliaro, J., Roberts, M., Shechter, S., Schaefer, A., McGinnis, K., et al. (2007). Estimating the impact of alcohol consumption on survival for HIV+ individuals. AIDS care, 19, 459–466.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Burdo, T. H., Weiffenbach, A., Woods, S. P., Letendre, S., Ellis, R. J., & Williams, K. C. (2013). Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS, 27.Google Scholar
  18. Burnam, M. A., Bing, E. G., Morton, S. C., Sherbourne, C., Fleishman, J. A., London, A. S., et al. (2001). Use of mental health and substance abuse treatment services among adults with HIV in the United States. Archives of General Psychiatry, 58, 729–736.PubMedCrossRefGoogle Scholar
  19. Byrd, D. A., Robinson-Papp, J., Mindt, M. R., Mintz, L., Elliott, K., Lighty, Q. & Morgello, S. J. J. O. T. I. N. S. (2013). Isolating cognitive and neurologic HIV effects in substance-dependent, confounded cohorts: A pilot study. 19, 463–473.Google Scholar
  20. Caldwell, J., Gongvatana, A., Navia, B., Sweet, L., Tashima, K., Ding, M., et al. (2014). Neural dysregulation during a working memory task in human immunodeficiency virus-seropositive and hepatitis C coinfected individuals. Journal of Neurovirology, 20, 398–411.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carter, S. L., Rourke, S. B., Murji, S., Shore, D., & Rourke, B. P. (2003). Cognitive complaints, depression, medical symptoms, and their association with neuropsychological functioning in HIV infection: A structural equation model analysis. Neuropsychology, 17, 410.PubMedCrossRefGoogle Scholar
  22. Castellon, S. A., Hinkin, C. H., & Myers, H. F. (2000). Neuropsychiatric disturbance is associated with executive dysfunction in HIV-1 infection. Journal of the International Neuropsychological Society, 6, 336–347.PubMedCrossRefGoogle Scholar
  23. Castellon, S. A., Hinkin, C. H., Wood, S., & Yarema, K. T. (1998). Apathy, depression, and cognitive performance in HIV-1 infection. The Journal of Neuropsychiatry and Clinical Neurosciences, 10, 320–329.PubMedCrossRefGoogle Scholar
  24. Chander, G., Himelhoch, S., & Moore, R. D. (2006). Substance abuse and psychiatric disorders in HIV-positive patients. Drugs, 66, 769–789.PubMedCrossRefGoogle Scholar
  25. Chang, L., Andres, M., Sadino, J., Jiang, C., Nakama, H., Miller, E., et al. (2011). Impact of apolipoprotein E ε4 and HIV on cognition and brain atrophy: antagonistic pleiotropy and premature brain aging. Neuroimage, 58, 1017–1027.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chang, L., Ernst, T., Witt, M. D., Ames, N., Gaiefsky, M. & Miller, E. (2002). Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naıve HIV patients. Neuroimage, 17, 1638–1648.Google Scholar
  27. Chang, L., Jiang, C., Cunningham, E., Buchthal, S., Douet, V., Andres, M., et al. (2014). Effects of APOE ε4, age, and HIV on glial metabolites and cognitive deficits. Neurology, 82, 2213–2222.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chang, L., Speck, O., Miller, E. N., Braun, J., Jovicich, J., Koch, C., et al. (2001). Neural correlates of attention and working memory deficits in HIV patients. Neurology, 57, 1001–1007.PubMedCrossRefGoogle Scholar
  29. Chang, L., Wong, V., Nakama, H., Watters, M., Ramones, D., Miller, E. N., et al. (2008). Greater than age-related changes in brain diffusion of HIV patients after 1 year. Journal of Neuroimmune Pharmacology, 3, 265–274.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chaparro, C. G. A. P., Zech, P., Schuch, F., Wolfarth, B., Rapp, M., & Heiβel, A. (2018). Effects of aerobic and resistance exercise alone or combined on strength and hormone outcomes for people living with HIV. A meta-analysis. PloS one, 13, e0203384.CrossRefGoogle Scholar
  31. Chen, W., Sulcove, J., Frank, I., Jaffer, S., Ozdener, H., & Kolson, D. L. (2002). Development of a human neuronal cell model for human immunodeficiency virus (HIV)-infected macrophage-induced neurotoxicity: apoptosis induced by HIV type 1 primary isolates and evidence for involvement of the Bcl-2/Bcl-xL-sensitive intrinsic apoptosis pathway. Journal of Virology, 76, 9407–9419.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cohen, R. A., Boland, R., Paul, R., Tashima, K. T., Schoenbaum, E. E., Celentano, D. D., et al. (2001). Neurocognitive performance enhanced by highly active antiretroviral therapy in HIV-infected women. Aids, 15, 341–345.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cohen, R. A., De La Monte, S., Gongvatana, A., Ombao, H., Gonzalez, B., Devlin, … Tashima, K. T. (2011). Plasma cytokine concentrations associated with HIV/hepatitis C coinfection are related to attention, executive and psychomotor functioning. Journal of neuroimmunology, 233, 204–210.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Cohen, R. A., Seider, T. R., & Navia, B. (2015). HIV effects on age-associated neurocognitive dysfunction: Premature cognitive aging or neurodegenerative disease? Alzheimer’s Research and Therapy, 7, 37.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Cole, M. A., Castellon, S. A., Perkins, A. C., Ureno, O. S., Robinet, M. B., Reinhard, M. J., et al. (2007). Relationship between psychiatric status and frontal–subcortical systems in HIV-infected individuals. Journal of the International Neuropsychological Society, 13, 549–554.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Conigliaro, J., Justice, A. C., Gordon, A. J., Bryant, K., Alcohol, V., & Group, B. C. R. (2006). Role of alcohol in determining human immunodeficiency virus (HIV)-relevant outcomes: a conceptual model to guide the implementation of evidence-based interventions into practice. Medical Care, S1–S6.Google Scholar
  37. Connolly, C. G., Bischoff-Grethe, A., Jordan, S. J., Woods, S. P., Ellis, R. J., Paulus, M. P., … Group, T. M. A. R. C. (2014). Altered functional response to risky choice in HIV infection. PloS one, 9, e111583.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Control, C. F. D., & Prevention. (1992). 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recommendations and Reports, 41, 1–19.Google Scholar
  39. Control, C. F. D., & Prevention, (2005). Cases of HIV infection and AIDS in the United States, 2002. HIV/AIDS Surveillance Report, 16, 14.Google Scholar
  40. Corrêa, D. G., Zimmermann, N., Netto, T. M., Tukamoto, G., Ventura, N., De Castro Bellini Leite, S., … Gasparetto, E. L. (2016). Regional cerebral gray matter volume in HIV-positive patients with executive function deficits. Journal of Neuroimaging, 26, 450–457.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Cristiani, S. A., Pukay-Martin, N. D., & Bornstein, R. A. (2004). Marijuana use and cognitive function in HIV-infected people. The Journal of Neuropsychiatry and Clinical Neurosciences, 16, 330–335.PubMedCrossRefGoogle Scholar
  42. Cutrono, S. E., Lewis, J. E., Perry, A., Signorile, J., Tiozzo, E., & Jacobs, K. A. (2016). The effect of a community-based exercise program on inflammation, metabolic risk, and fitness levels among persons living with HIV/AIDS. AIDS and Behavior, 20, 1123–1131.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Cysique, L. A., & Brew, B. J. (2009). Neuropsychological functioning and antiretroviral treatment in HIV/AIDS: A review. Neuropsychology Review, 19, 169–185.PubMedCrossRefGoogle Scholar
  44. Cysique, L. A., Hey-Cunningham, W. J., Dermody, N., Chan, P., Brew, B. J., & Koelsch, K. K. (2015). Peripheral blood mononuclear cells HIV DNA levels impact intermittently on neurocognition. PLoS ONE, 10, e0120488.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Cysique, L. A., Moffat, K., Moore, D. M., Lane, T. A., Davies, N. W., Carr, A., et al. (2013). HIV, vascular and aging injuries in the brain of clinically stable HIV-infected adults: A (1)H MRS study. PLoS ONE, 8, e61738.PubMedPubMedCentralCrossRefGoogle Scholar
  46. D’Antoni, M. L., Paul, R. H., Mitchell, B. I., Kohorn, L., Fischer, L., Lefebvre, E., et al. (2018). Improved cognitive performance and reduced monocyte activation in virally suppressed chronic HIV after dual CCR51 and CCR51 antagonism. JAIDS Journal of Acquired Immune Deficiency Syndromes, 79, 108–116.PubMedCrossRefPubMedCentralGoogle Scholar
  47. de Oliveira, M. F., Murrell, B., Pérez-Santiago, J., Vargas, M., Ellis, R. J., Letendre, S., et al. (2015). Circulating HIV DNA correlates with neurocognitive impairment in older HIV-infected adults on suppressive ART. Scientific Reports, 5, 17094.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dickens, A. M., Anthony, D. C., Deutsch, R., Mielke, M. M., Claridge, T. D., Grant, I., et al. (2015). Cerebrospinal fluid metabolomics implicate bioenergetic adaptation as a neural mechanism regulating shifts in cognitive states of HIV-infected patients. AIDS (London, England), 29, 559.Google Scholar
  49. Doyle, K. L., Woods, S. P., Morgan, E. E., Iudicello, J. E., Cameron, M. V., Gilbert, P. E., … Group, H. N. R. P. (2016). Health-related decision-making in HIV disease. Journal of Clinical Psychology in Medical Settings, 23, 135–146.PubMedPubMedCentralCrossRefGoogle Scholar
  50. du Plessis, S., Vink, M., Joska, J. A., Koutsilieri, E., Bagadia, A., Stein, D. J., et al. (2015). HIV infection is associated with impaired striatal function during inhibition with normal cortical functioning on functional MRI. Journal of the International Neuropsychological Society, 21, 722–731.PubMedCrossRefGoogle Scholar
  51. du Plessis, S., Vink, M., Joska, J. A., Koutsilieri, E., Bagadia, A., Stein, D. J., et al. (2016). Prefrontal cortical thinning in HIV infection is associated with impaired striatal functioning. Journal of Neural Transmission (Vienna), 123, 643–651.CrossRefGoogle Scholar
  52. Dufour, C. A., Marquine, M. J., Fazeli, P. L., Henry, B. L., Ellis, R. J., Grant, I., … Group, H. (2013). Physical exercise is associated with less neurocognitive impairment among HIV-infected adults. Journal of neurovirology, 19, 410–417.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dufour, C. A., Marquine, M. J., Fazeli, P. L., Umlauf, A., Henry, B. L., Zlatar, Z., et al. (2018). A longitudinal analysis of the impact of physical activity on neurocognitive functioning among hiv-infected adults. AIDS and Behavior, 22, 1562–1572.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Epstein, L. G., & Gendelman, H. E. (1993). Human immunodeficiency virus type 1 infection of the nervous system: Pathogenetic mechanisms. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 33, 429–436.CrossRefGoogle Scholar
  55. Erdmann, N., Zhao, J., Lopez, A. L., Herek, S., Curthoys, N., Hexum, T. D., et al. (2007). Glutamate production by HIV-1 infected human macrophage is blocked by the inhibition of glutaminase. Journal of Neurochemistry, 102, 539–549.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ernst, T., Chang, L., & Arnold, S. (2003). Increased glial metabolites predict increased working memory network activation in HIV brain injury. Neuroimage, 19, 1686–1693.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ernst, T., Chang, L., Jovicich, J., Ames, N., & Arnold, S. (2002). Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology, 59, 1343–1349.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Everall, I., Heaton, R., Marcotte, T., Ellis, R., Mccutchan, J., Atkinson, J., … Group, H. (1999). Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. Brain Pathology, 9, 209–217.CrossRefGoogle Scholar
  59. Fama, R., Sullivan, E. V., Sassoon, S. A., Pfefferbaum, A., & Zahr, N. M. (2016). Impairments in component processes of executive function and episodic memory in alcoholism, HIV infection, and HIV infection with alcoholism comorbidity. Alcoholism: Clinical and Experimental Research, 40, 2656–2666.Google Scholar
  60. Farinpour, R., Martin, E. M., Seidenberg, M., Pitrak, D. L., Pursell, K. J., Mullane, K. M., et al. (2000). Verbal working memory in HIV-seropositive drug users. Journal of the International Neuropsychological Society, 6, 548–555.PubMedCrossRefGoogle Scholar
  61. Fazeli, P. L., Marquine, M. J., Dufour, C., Henry, B. L., Montoya, J., Gouaux, B., et al. (2015). Physical activity is associated with better neurocognitive and everyday functioning among older adults with HIV disease. AIDS and Behavior, 19, 1470–1477.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Fogarty, A., Rawstorne, P., Prestage, G., Crawford, J., Grierson, J., & Kippax, S. (2007). Marijuana as therapy for people living with HIV/AIDS: Social and health aspects. AIDS Care, 19, 295–301.PubMedCrossRefGoogle Scholar
  63. Fujiwara, E., Tomlinson, S. E., Purdon, S. E., Gill, M. J., & Power, C. (2015). Decision making under explicit risk is impaired in individuals with human immunodeficiency virus (HIV). Journal of Clinical and Experimental Neuropsychology, 37, 733–750.PubMedCrossRefGoogle Scholar
  64. Gomez, D., Power, C., Gill, M. J., & Fujiwara, E. (2017). Determinants of risk-taking in HIV-associated neurocognitive disorders. Neuropsychology, 31, 798.PubMedCrossRefGoogle Scholar
  65. Gongvatana, A., Morgan, E. E., Iudicello, J. E., Letendre, S. L., Grant, I., Woods, S. P. & Group, H. N. R. P. (2014). A history of alcohol dependence augments HIV-associated neurocognitive deficits in persons aged 60 and older. Journal of Neurovirology, 20, 505–513.Google Scholar
  66. Gonzalez, R., Schuster, R. M., Vassileva, J., & Martin, E. M. (2011). Impact of HIV and a history of marijuana dependence on procedural learning among individuals with a history of substance dependence. Journal of Clinical and Experimental Neuropsychology, 33, 735–752.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gonzalez, R., Vassileva, J., Bechara, A., Grbesic, S., Sworowski, L., Novak, R. M., et al. (2005). The influence of executive functions, sensation seeking, and HIV serostatus on the risky sexual practices of substance-dependent individuals. Journal of the International Neuropsychological Society, 11, 121–131.PubMedCrossRefGoogle Scholar
  68. Goodkin, K., Miller, E. N., Cox, C., Reynolds, S., Becker, J. T., Martin, E., … Study, M. A. C. (2017). Effect of ageing on neurocognitive function by stage of HIV infection: Evidence from the Multicenter AIDS Cohort Study. The Lancet HIV, 4, e411–e422.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Goodkin, K., Shapshak, P., Metsch, L. R., McCoy, C. B., Crandall, K. A., Kumar, M., et al. (1998). Cocaine abuse and HIV-1 infection: Epidemiology and neuropathogenesis. Journal of Neuroimmunology, 83, 88–101.PubMedCrossRefGoogle Scholar
  70. Grant, I., Franklin, D. R., Jr, Deutsch, R., Woods, S. P., Vaida, F., Ellis, R. J., … CHARTER Group (2014). Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology, 82(23), 2055–2062. https://doi.org/10.1212/WNL.0000000000000492.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hakkers, C. S., Arends, J. E., Barth, R. E., Du Plessis, S., Hoepelman, A. I., & Vink, M. (2017). Review of functional MRI in HIV: effects of aging and medication. Journal of neurovirology, 23(1), 20–32. https://doi.org/10.1007/s13365-016-0483-y.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hardy, D. J., Hinkin, C. H., Levine, A. J., Castellon, S. A., & Lam, M. N. (2006). Risky decision making assessed with the gambling task in adults with HIV. Neuropsychology, 20, 355.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hardy, D. J., & Vance, D. E. (2009). The neuropsychology of HIV/AIDS in older adults. Neuropsychology Review, 19, 263.PubMedCrossRefGoogle Scholar
  74. Heaton, R. K., Franklin, D. R., Ellis, R. J., McCutchan, J. A., Letendre, S. L., Leblanc, S., et al. (2011). HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. Journal of Neurovirology, 17, 3–16.PubMedCrossRefGoogle Scholar
  75. Hemelaar, J., Gouws, E., Ghys, P. D., & Osmanov, S. (2006). Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004. Aids, 20, W13–W23.PubMedCrossRefGoogle Scholar
  76. Hinkin, C. H., Castellon, S. A., Hardy, D. J., Granholm, E., & Siegle, G. (1999). Computerized and traditional stroop task dysfunction in HIV-l infection. Neuropsychology, 13, 306–316.PubMedCrossRefGoogle Scholar
  77. Hinkin, C. H., Hardy, D. J., Mason, K. I., Castellon, S. A., Durvasula, R. S., Lam, M. N., et al. (2004). Medication adherence in HIV-infected adults: Effect of patient age, cognitive status, and substance abuse. AIDS (London, England), 18, S19.CrossRefGoogle Scholar
  78. Hinkin, C. H., Hardy, D. J., Mason, K. I., Castellon, S. A., Lam, M. N., Stefaniak, M., et al. (2002). Verbal and spatial working memory performance among HIV-infected adults. Journal of the International Neuropsychological Society, 8, 532–538.PubMedCrossRefGoogle Scholar
  79. Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16, 174–180.PubMedCrossRefGoogle Scholar
  80. Honn, V. J., Para, M. F., Whitacre, C. C., & Bornstein, R. A. (1999). Effect of exercise on neuropsychological performance in asymptomatic HIV infection. AIDS and Behavior, 3, 67–74.CrossRefGoogle Scholar
  81. Imp, B. M., Rubin, L. H., Tien, P. C., Plankey, M. W., Golub, E. T., French, A. L., & Valcour, V. G. (2016). Monocyte activation is associated with worse cognitive performance in virologically suppressed HIV-infected women. The Journal of Infectious Diseases, jiw506.Google Scholar
  82. Ipser, J. C., Brown, G. G., Bischoff-Grethe, A., Connolly, C. G., Ellis, R. J., Heaton, R. K., et al. (2015). HIV infection is associated with attenuated frontostriatal intrinsic connectivity: A preliminary study. Journal of the International Neuropsychological Society, 21, 203–213.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Israelski, D., Prentiss, D., Lubega, S., Balmas, G., Garcia, P., Muhammad, M., et al. (2007). Psychiatric co-morbidity in vulnerable populations receiving primary care for HIV/AIDS. Aids Care, 19, 220–225.PubMedCrossRefGoogle Scholar
  84. Itoh, K., Mehraein, P., & Weis, S. (2000). Neuronal damage of the substantia nigra in HIV-1 infected brains. Acta Neuropathologica, 99, 376–384.PubMedCrossRefGoogle Scholar
  85. Iudicello, J. E., Woods, S. P., Cattie, J. E., Doyle, K., Grant, I., & Group, H. N. R. P. (2013). Risky decision-making in HIV-associated neurocognitive disorders (HAND). The Clinical Neuropsychologist, 27, 256–275.Google Scholar
  86. Jiang, X., Barasky, R., Olsen, H., Riesenhuber, M., & Magnus, M. (2016). Behavioral and neuroimaging evidence for impaired executive function in “cognitively normal” older HIV-infected adults. AIDS Care, 28, 436–440.Google Scholar
  87. Jiang, Z.-G., Piggee, C., Heyes, M., Murphy, C., Quearry, B., Bauer, M., et al. (2001). Glutamate is a mediator of neurotoxicity in secretions of activated HIV-1-infected macrophages. Journal of Neuroimmunology, 117, 97–107.PubMedCrossRefGoogle Scholar
  88. Jurado, M. B., & Rosselli, M. (2007). The elusive nature of executive functions: A review of our current understanding. Neuropsychology Review, 17, 213–233.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Juster, R.-P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience and Biobehavioral Reviews, 35, 2–16.PubMedCrossRefGoogle Scholar
  90. Kanmogne, G. D., Fonsah, J. Y., Tang, B., Doh, R. F., Kengne, A. M., Umlauf, A., … Franklin, D. (2018). Effects of HIV on executive function and verbal fluency in Cameroon. Scientific Reports, 8.Google Scholar
  91. Kesby, J. P., Heaton, R. K., Young, J. W., Umlauf, A., Woods, S. P., Letendre, S. L., … Semenova, S. (2015). Methamphetamine exposure combined with HIV-1 disease or gp120 expression: Comparison of learning and executive functions in humans and mice. Neuropsychopharmacology, 40, 1899.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kliegel, M., Martin, M., McDaniel, M. A., & Einstein, G. O. (2002). Complex prospective memory and executive control of working memory: A process model. Psychological Test and Assessment Modeling, 44, 303.Google Scholar
  93. Kusao, I., Shiramizu, B., Liang, C.-Y., Grove, J., Agsalda, M., Troelstrup, D., et al. (2012). Cognitive performance related to HIV-1-infected monocytes. The Journal of Neuropsychiatry and Clinical Neurosciences, 24, 71–80.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lezak, M. D., Howieson, D. B., Loring, D. W., & Fischer, J. S. (2004). Neuropsychological assessment. USA: Oxford University Press.Google Scholar
  95. Lyons, J. L., Uno, H., Ancuta, P., Kamat, A., Moore, D. J., Singer, E. J., … Gabuzda, D. (2011). Plasma sCD14 is a biomarker associated with impaired neurocognitive test performance in attention and learning domains in HIV infection. Journal of Acquired Immune Deficiency Syndromes, 57, 371.PubMedCrossRefGoogle Scholar
  96. Machtinger, E., Wilson, T., Haberer, J. E., & Weiss, D. (2012). Psychological trauma and PTSD in HIV-positive women: A meta-analysis. AIDS and Behavior, 16, 2091–2100.PubMedCrossRefGoogle Scholar
  97. Maki, P. M., Rubin, L. H., Valcour, V., Martin, E., Crystal, H., Young, M., … Alden, C. J. N. (2015). Cognitive function in women with HIV Findings from the Women’s Interagency HIV Study. 84, 231–240.Google Scholar
  98. Manly, J. J., Smith, C., Crystal, H. A., Richardson, J., Golub, E. T., Greenblatt, R., et al. (2011). Relationship of ethnicity, age, education, and reading level to speed and executive function among HIV+ and HIV–women: The Women’s Interagency HIV Study (WIHS) Neurocognitive Substudy. Journal of Clinical and Experimental Neuropsychology, 33, 853–863.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mapstone, M., Hilton, T. N., Yang, H., Guido, J. J., Luque, A. E., Hall, W. J., et al. (2013). Poor aerobic fitness may contribute to cognitive decline in HIV-infected older adults. Aging and disease, 4, 311.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Maragos, W., Tillman, P., Jones, M., Bruce-Keller, A., Roth, S., Bell, J., et al. (2003). Neuronal injury in hippocampus with human immunodeficiency virus transactivating protein, Tat. Neuroscience, 117, 43–53.PubMedCrossRefGoogle Scholar
  101. Martin, E., Gonzalez, R., Vassileva, J., Maki, P. M., Bechara, A., & Brand, M. (2016). Sex and HIV serostatus differences in decision making under risk among substance-dependent individuals. Journal of Clinical and Experimental Neuropsychology, 38, 404–415.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Martin, E. M., Dehaan, S., Vassileva, J., Gonzalez, R., Weller, J., & Bechara, A. (2013). Decision making among HIV+ drug using men who have sex with men: A preliminary report from the Chicago Multicenter AIDS Cohort Study. Journal of Clinical and Experimental Neuropsychology, 35, 573–583.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Martin, E. M., Novak, R. M., Fendrich, M., Vassileva, J., Gonzalez, R., Grbesic, S., … Sworowski, L. J. J. O. T. I. N. S. (2004a). Stroop performance in drug users classified by HIV and hepatitis C virus serostatus. 10, 298–300.Google Scholar
  104. Martin, E. M., Pitrak, D. L., Rains, N., Grbesic, S., Pursell, K., Nunnally, G., et al. (2003). Delayed nonmatch-to-sample performance in HIV-seropositive and HIV-seronegative polydrug abusers. Neuropsychology, 17, 283.PubMedCrossRefGoogle Scholar
  105. Martin, E. M., Pitrak, D. L., Weddington, W., Rains, N. A., Nunnally, G., Nixon, H., … Bechara, A. (2004b). Cognitive impulsivity and HIV serostatus in substance dependent males. Journal of the International Neuropsychological Society, 10, 931–938.PubMedCrossRefGoogle Scholar
  106. Martin, E. M., Robertson, L. C., Edelstein, H. E., Jagust, W. J., Sorensen, D. J., Giovanni, D. S., et al. (1992). Performance of patients with early HIV-1 infection on the Stroop task. Journal of Clinical and Experimental Neuropsychology, 14, 857–868.PubMedCrossRefGoogle Scholar
  107. Martin, E. M., Sullivan, T. S., Reed, R. A., Fletcher, T. A., Pitrak, D. L., Weddington, W., et al. (2001). Auditory working memory in HIV-1 infection. Journal of the International Neuropsychological Society, 7, 20–26.PubMedCrossRefGoogle Scholar
  108. McEwen, B. S. (2008). Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583, 174–185.PubMedPubMedCentralCrossRefGoogle Scholar
  109. McGuire, J. L., Gill, A. J., Douglas, S. D., & Kolson, D. L. (2015). Central and peripheral markers of neurodegeneration and monocyte activation in HIV-associated neurocognitive disorders. Journal of neurovirology, 21, 439–448.PubMedPubMedCentralCrossRefGoogle Scholar
  110. McIntosh, R. C., Ironson, G., Antoni, M., Kumar, M., Fletcher, M. A., & Schneiderman, N. (2014). Alexithymia is linked to neurocognitive, psychological, neuroendocrine, and immune dysfunction in persons living with HIV. Brain, Behavior, and Immunity, 36, 165–175.PubMedCrossRefGoogle Scholar
  111. McIntosh, R. C., & Rosselli, M. (2012). Stress and coping in women living with HIV: A meta-analytic review. AIDS and Behavior, 16, 2144–2159.PubMedCrossRefGoogle Scholar
  112. McIntosh, R. C., Rosselli, M., Uddin, L. Q., & Antoni, M. (2015). Neuropathological sequelae of human immunodeficiency virus and apathy: A review of neuropsychological and neuroimaging studies. Neuroscience and Biobehavioral Reviews, 55, 147–164.PubMedCrossRefGoogle Scholar
  113. Meade, C. S., Bell, R. P., Towe, S. L., Chen, N. K., Hobkirk, A. L., & Huettel, S. A. (2018). Synergistic effects of marijuana abuse and HIV infection on neural activation during a cognitive interference task. Addiction Biology.Google Scholar
  114. Meade, C. S., Conn, N. A., Skalski, L. M., & Safren, S. A. (2011). Neurocognitive impairment and medication adherence in HIV patients with and without cocaine dependence. Journal of Behavioral Medicine, 34, 128–138.PubMedCrossRefGoogle Scholar
  115. Meade, C. S., Cordero, D. M., Hobkirk, A. L., Metra, B. M., Chen, N. K., & Huettel, S. A. (2016). Compensatory activation in fronto-parietal cortices among HIV-infected persons during a monetary decision-making task. Human Brain Mapping, 37, 2455–2467.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Meade, C. S., Hobkirk, A. L., Towe, S. L., Chen, N.-K., Bell, R. P., & Huettel, S. A. (2017). Cocaine dependence modulates the effect of HIV infection on brain activation during intertemporal decision making. Drug and Alcohol Dependence, 178, 443–451.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Melrose, R. J., Tinaz, S., Castelo, J. M., Courtney, M. G., & Stern, C. E. (2008). Compromised fronto-striatal functioning in HIV: An fMRI investigation of semantic event sequencing. Behavioural Brain Research, 188, 337–347.PubMedCrossRefGoogle Scholar
  118. Meyer, J. P., Springer, S. A., & Altice, F. L. (2011). Substance abuse, violence, and HIV in women: A literature review of the syndemic. Journal of Women’s Health, 20, 991–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.CrossRefGoogle Scholar
  120. Monroe, A., Zhang, L., Jacobson, L. P., Plankey, M., Brown, T. T., Miller, E., et al. (2017). The association between physical activity and cognition in men with and without HIV infection. HIV Medicine, 18, 555–563.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Moradi, A. R., Miraghaei, M. A., Parhon, H., Jabbari, H., & Jobson, L. (2013). Posttraumatic stress disorder, depression, executive functioning, and autobiographical remembering in individuals with HIV and in carers of those with HIV in Iran. AIDS Care, 25, 281–288.PubMedCrossRefGoogle Scholar
  122. Morgan, E. E., Iudicello, J. E., Weber, E., & Woods, S. P. (2016). Neuropsychological aspects of methamphetamine use disorders and human immunodeficiency virus disease. In Neuropathology of drug addictions and substance misuse. Elsevier.Google Scholar
  123. Murray, J. D., Jaramillo, J., & Wang, X. J. (2017). Working memory and decision-making in a frontoparietal circuit model. Journal of Neuroscience, 37, 12167–12186.PubMedCrossRefGoogle Scholar
  124. Napier, T. C. (2017). Impact on cortical function of cocaine abuse co-occurring with HIV. Neuropsychopharmacology, 42, 365.PubMedCrossRefGoogle Scholar
  125. Nasi, M., de Biasi, S., Gibellini, L., Bianchini, E., Pecorini, S., Bacca, V., et al. (2017). Ageing and inflammation in patients with HIV infection. Clinical and Experimental Immunology, 187, 44–52.PubMedCrossRefGoogle Scholar
  126. Nath, A., Anderson, C., Jones, M., Maragos, W., Booze, R., Mactutus, C., et al. (2000). Neurotoxicity and dysfunction of dopaminergic systems associated with AIDS dementia. Journal of Psychopharmacology, 14, 222–227.PubMedCrossRefGoogle Scholar
  127. O’Brien, K. K., Tynan, A.-M., Nixon, S. A., & Glazier, R. H. (2016). Effectiveness of aerobic exercise for adults living with HIV: Systematic review and meta-analysis using the Cochrane Collaboration protocol. BMC Infectious Diseases, 16, 182.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ortega, M., Brier, M. R., & Ances, B. M. (2015). Effects of HIV and combination antiretroviral therapy on cortico-striatal functional connectivity. Aids, 29, 703–712.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Patton, H. K., Zhou, Z.-H., Bubien, J. K., Benveniste, E. N., & Benos, D. J. (2000). gp120-induced alterations of human astrocyte function: Na+/H+ exchange, K+ conductance, and glutamate flux. American Journal of Physiology-Cell Physiology, 279, C700–C708.PubMedCrossRefGoogle Scholar
  130. Paydary, K., Mahin Torabi, S., Seyedalinaghi, S., Noori, M., Noroozi, A., Ameri, S., & Ekhtiari, H. (2016). Impulsivity, sensation seeking, and risk-taking behaviors among HIV-positive and HIV-negative heroin dependent persons. AIDS Research and Treatment.Google Scholar
  131. Persidsky, Y., Ho, W., Ramirez, S. H., Potula, R., Abood, M. E., Unterwald, E., et al. (2011). HIV-1 infection and alcohol abuse: Neurocognitive impairment, mechanisms of neurodegeneration and therapeutic interventions. Brain, Behavior, and Immunity, 25, S61–S70.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pfefferbaum, A., Rosenbloom, M. J., Sassoon, S. A., Kemper, C. A., Deresinski, S., Rohlfing, T., et al. (2012). Regional brain structural dysmorphology in human immunodeficiency virus infection: Effects of acquired immune deficiency syndrome, alcoholism, and age. Biological Psychiatry, 72, 361–370.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Plessis, S., Vink, M., Joska, J. A., Koutsilieri, E., Bagadia, A., Stein, D. J., et al. (2015). HIV infection results in ventral-striatal reward system hypo-activation during cue processing. AIDS, 29, 1335–1343.PubMedCrossRefGoogle Scholar
  134. Plessis, S. D., Vink, M., Joska, J. A., Koutsilieri, E., Stein, D. J., & Emsley, R. (2014). HIV infection and the fronto-striatal system: A systematic review and meta-analysis of fMRI studies. AIDS, 28, 803–811.PubMedCrossRefGoogle Scholar
  135. Pukay-Martin, N. D., Cristiani, S. A., Saveanu, R., & Bornstein, R. A. (2003). The relationship between stressful life events and cognitive function in HIV-infected men. The Journal of Neuropsychiatry and Clinical Neurosciences, 15, 436–441.PubMedCrossRefGoogle Scholar
  136. Reger, M., Welsh, R., Razani, J., Martin, D. J., & Boone, K. B. (2002). A meta-analysis of the neuropsychological sequelae of HIV infection. Journal of the International Neuropsychological Society, 8, 410–424.Google Scholar
  137. Reger, M. A., Martin, D. J., Cole, S. L., & Strauss, G. (2005). The relationship between plasma viral load and neuropsychological functioning in HIV-1 infection. Archives of Clinical Neuropsychology, 20, 137–143.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Rehm, K. E., & Konkle-Parker, D. (2016). Physical activity levels and perceived benefits and barriers to physical activity in HIV-infected women living in the deep south of the United States. AIDS Care, 28, 1205–1210.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Reitan, R. M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276.CrossRefGoogle Scholar
  140. Rippeth, J. D., Heaton, R. K., Carey, C. L., Marcotte, T. D., Moore, D. J., Gonzalez, R., … Group, H. (2004). Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. Journal of the International Neuropsychological Society, 10, 1–14.Google Scholar
  141. Rubin, L. H., Benning, L., Keating, S. M., Norris, P. J., Burke-Miller, J., Savarese, A., et al. (2018a). Variability in C-reactive protein is associated with cognitive impairment in women living with and without HIV: A longitudinal study. Journal of Neurovirology, 24, 41–51.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Rubin, L. H., Phan, K. L., Keating, S. M., & Maki, P. M. (2018b). A single low dose of hydrocortisone enhances cognitive functioning in HIV-infected women. AIDS, 32, 1983–1993.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Rubin, L. H., Pyra, M., Cook, J. A., Weber, K. M., Cohen, M. H., Martin, E., et al. (2016a). Post-traumatic stress is associated with verbal learning, memory, and psychomotor speed in HIV-infected and HIV-uninfected women. Journal of Neurovirology, 22, 159–169.PubMedCrossRefGoogle Scholar
  144. Rubin, L. H., Wu, M., Sundermann, E. E., Meyer, V. J., Smith, R., Weber, K. M., et al. (2016b). Elevated stress is associated with prefrontal cortex dysfunction during a verbal memory task in women with HIV. Journal of Neurovirology, 22, 840–851.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sacktor, N., Skolasky, R., Tarwater, P., Mcarthur, J., Selnes, O., Becker, J., … Study, M. A. C. (2003). Response to systemic HIV viral load suppression correlates with psychomotor speed performance. Neurology, 61, 567–569.PubMedCrossRefGoogle Scholar
  146. Sahakian, B. J., & Owen, A. (1992). Computerized assessment in neuropsychiatry using CANTAB: Discussion paper. Journal of the Royal Society of Medicine, 85, 399.PubMedPubMedCentralGoogle Scholar
  147. Schnitzspahn, K. M., Stahl, C., Zeintl, M., Kaller, C. P., & Kliegel, M. (2013). The role of shifting, updating, and inhibition in prospective memory performance in young and older adults. Developmental Psychology, 49, 1544.PubMedCrossRefGoogle Scholar
  148. Schulte, T., Müller-Oehring, E. M., Sullivan, E. V., & Pfefferbaum, A. (2011). Disruption of emotion and conflict processing in HIV infection with and without alcoholism comorbidity. Journal of the International Neuropsychological Society, 17, 537–550.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Shiramizu, B., Williams, A. E., Shikuma, C., & Valcour, V. (2009). Amount of HIV DNA in peripheral blood mononuclear cells is proportional to the severity of HIV-1-associated neurocognitive disorders. The Journal of Neuropsychiatry and Clinical Neurosciences, 21, 68–74.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., et al. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72, 239.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Soontornniyomkij, V., Kesby, J. P., Morgan, E. E., Bischoff-Grethe, A., Minassian, A., Brown, G. G., … Group, T. M. A. R. C. (2016). Effects of HIV and methamphetamine on brain and behavior: Evidence from human studies and animal models. Journal of Neuroimmune Pharmacology, 11, 495–510.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Spies, G., Ahmed-Leitao, F., Fennema-Notestine, C., Cherner, M., & Seedat, S. (2016). Effects of HIV and childhood trauma on brain morphometry and neurocognitive function. Journal of Neurovirology, 22, 149–158.PubMedCrossRefGoogle Scholar
  153. Spies, G., Fennema-Notestine, C., Cherner, M., & Seedat, S. (2017). Changes in cognitive function in women with HIV infection and early life stress. AIDS Care, 29, 14–23.PubMedCrossRefGoogle Scholar
  154. Spudich, S. (2016). Immune activation in the central nervous system throughout the course of HIV infection. Current Opinion in HIV and AIDS, 11, 226.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Stavro, K., Pelletier, J., & Potvin, S. (2013). Widespread and sustained cognitive deficits in alcoholism: A meta-analysis. Addiction Biology, 18, 203–213.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Stuss, D. T., & Alexander, M. P. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research, 63, 289–298.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Sullivan, K. A., Messer, L. C., & Quinlivan, E. B. (2015). Substance abuse, violence, and HIV/AIDS (SAVA) syndemic effects on viral suppression among HIV positive women of color. AIDS Patient Care and STDs, 29, S42–S48.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Tang, V. M., Lang, D. J., Giesbrecht, C. J., Panenka, W. J., Willi, T., Procyshyn, R. M., et al. (2015). White matter deficits assessed by diffusion tensor imaging and cognitive dysfunction in psychostimulant users with comorbid human immunodeficiency virus infection. BMC Research Notes, 8, 515.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Tate, D. F., Conley, J., Paul, R. H., Coop, K., Zhang, S., Zhou, W., et al. (2010). Quantitative diffusion tensor imaging tractography metrics are associated with cognitive performance among HIV-infected patients. Brain Imaging and Behavior, 4, 68–79.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Thames, A., Kuhn, T., Mahmood, Z., Bilder, R., Williamson, T., Singer, E., et al. (2018). Effects of social adversity and HIV on subcortical shape and neurocognitive function. Brain imaging and behavior, 12, 96–108.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Thames, A. D., Streiff, V., Patel, S. M., Panos, S. E., Castellon, S. A., & Hinkin, C. H. (2012). The role of HIV infection, cognition, and depression in risky decision-making. The Journal of Neuropsychiatry and Clinical Neurosciences, 24, 340–348.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Thieblemont, N., Haeffner-Cavaillon, N., Haeffner, A., Cholley, B., Weiss, L., & Kazatchkine, M. D. (1995). Triggering of complement receptors CR173 (CD35) and CR173 (CD11b/CD18) induces nuclear translocation of NF-kappa B (p50/p65) in human monocytes and enhances viral replication in HIV-infected monocytic cells. The Journal of Immunology, 155, 4861–4867.PubMedPubMedCentralGoogle Scholar
  163. Thomas, J. B., Brier, M. R., Snyder, A. Z., Vaida, F. F., & Ances, B. M. (2013). Pathways to neurodegeneration: Effects of HIV and aging on resting-state functional connectivity. Neurology, 80, 1186–1193.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Tomasi, D., Chang, L., De Castro Caparelli, E., Telang, F., & Ernst, T. (2006). The human immunodeficiency virus reduces network capacity: acoustic noise effect. Annals of Neurology, 59, 419–423.Google Scholar
  165. Tozzi, V., Balestra, P., Galgani, S., Narciso, P., Ferri, F., Sebastiani, G., et al. (1999). Positive and sustained effects of highly active antiretroviral therapy on HIV-1-associated neurocognitive impairment. Aids, 13, 1889–1897.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Tozzi, V., Narciso, P., Galgani, S., Sette, P., Balestra, P., Gerace, C., … CAMPORIONDO, M. P. (1993). Effects of zidovudine in 30 patients with mild to end-stage AIDS dementia complex. Aids.Google Scholar
  167. Trillo-Pazos, G., Diamanturos, A., Rislove, L., Menza, T., Chao, W., Belem, P., et al. (2003). Detection of HIV-1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with Hiv-1 encephalitis by laser capture microdissection. Brain Pathology, 13, 144–154.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Valcour, V. G., Ananworanich, J., Agsalda, M., Sailasuta, N., Chalermchai, T., Schuetz, A., et al. (2013). HIV DNA reservoir increases risk for cognitive disorders in cART-naive patients. PLoS ONE, 8, e70164.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Valcour, V. G., Shikuma, C. M., Watters, M. R., & Sacktor, N. C. (2004). Cognitive impairment in older HIV-1-seropositive individuals: Prevalence and potential mechanisms. AIDS (London, England), 18, S79.CrossRefGoogle Scholar
  170. van Gorp, W. G., Baerwald, J. P., Ferrando, S. J., McElhiney, M. C., & Rabkin, J. G. (1999). The relationship between employment and neuropsychological impairment in HIV infection. Journal of the International Neuropsychological Society, 5, 534–539.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Vancampfort, D., Mugisha, J., de Hert, M., Probst, M., Firth, J., Gorczynski, P., et al. (2018a). Global physical activity levels among people living with HIV: A systematic review and meta-analysis. Disability and Rehabilitation, 40, 388–397.PubMedCrossRefGoogle Scholar
  172. Vancampfort, D., Mugisha, J., Richards, J., de Hert, M., Lazzarotto, A., Schuch, F., et al. (2017). Dropout from physical activity interventions in people living with HIV: a systematic review and meta-analysis. AIDS Care, 29, 636–643.PubMedCrossRefGoogle Scholar
  173. Vancampfort, D., Mugisha, J., Richards, J., de Hert, M., Probst, M., & Stubbs, B. (2018b). Physical activity correlates in people living with HIV/AIDS: A systematic review of 45 studies. Disability and Rehabilitation, 40, 1618–1629.PubMedCrossRefGoogle Scholar
  174. Vancampfort, D., Mugisha, J., Rosenbaum, S., Firth, J., de Hert, M., Probst, M., et al. (2016). Cardiorespiratory fitness levels and moderators in people with HIV: A systematic review and meta-analysis. Preventive Medicine, 93, 106–114.PubMedCrossRefPubMedCentralGoogle Scholar
  175. Vassileva, J., Ahn, W.-Y., Weber, K. M., Busemeyer, J. R., Stout, J. C., Gonzalez, R., et al. (2013). Computational modeling reveals distinct effects of HIV and history of drug use on decision-making processes in women. PLoS ONE, 8, e68962.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Walker, K. A., & Brown, G. G. (2018). HIV-associated executive dysfunction in the era of modern antiretroviral therapy: A systematic review and meta-analysis. Journal of Clinical and Experimental Neuropsychology, 40, 357–376.PubMedCrossRefGoogle Scholar
  177. Watson, C. W.-M., Sundermann, E. E., Hussain, M. A., Umlauf, A., Thames, A. D., Moore, R. C., et al. (2019). Effects of trauma, economic hardship, and stress on neurocognition and everyday function in HIV. Health Psychology, 38, 33.PubMedCrossRefGoogle Scholar
  178. Webel, A. R., Perazzo, J., Decker, M., Horvat-Davey, C., Sattar, A., & Voss, J. (2016). Physical activity is associated with reduced fatigue in adults living with HIV/AIDS. Journal of Advanced Nursing, 72, 3104–3112.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Weber, E., Blackstone, K., & Woods, S. P. (2013). Cognitive neurorehabilitation of HIV-associated neurocognitive disorders: a qualitative review and call to action. Neuropsychology Review, 23, 81–98.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Wendelken, L. A., & Valcour, V. (2012). Impact of HIV and aging on neuropsychological function. Journal of Neurovirology, 18, 256–263.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Whetten, K., Leserman, J., Lowe, K., Stangl, D., Thielman, N., Swartz, M., et al. (2006). Prevalence of childhood sexual abuse and physical trauma in an HIV-positive sample from the deep south. American Journal of Public Health, 96, 1028–1030.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Woods, S. P., Morgan, E. E., Marquie-Beck, J., Carey, C. L., Grant, I., & Letendre, S. L. (2006). Markers of macrophage activation and axonal injury are associated with prospective memory in HIV-1 disease. Cognitive and Behavioral Neurology: Official Journal of the Society for Behavioral and Cognitive Neurology, 19, 217.CrossRefGoogle Scholar
  183. Woods, S. P., Rippeth, J. D., Frol, A. B., Levy, J. K., Ryan, E., Soukup, V. M., et al. (2004). Interrater reliability of clinical ratings and neurocognitive diagnoses in HIV. Journal of Clinical and Experimental Neuropsychology, 26, 759–778.PubMedCrossRefGoogle Scholar
  184. Zheng, J., Thylin, M. R., Persidsky, Y., Williams, C. E., Cotter, R. L., Zink, W., et al. (2001). HIV-1 infected immune competent mononuclear phagocytes influence the pathways to neuronal demise. Neurotoxicity Research, 3, 461–484.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of MiamiMiamiUSA

Personalised recommendations