Advertisement

Executive Control Guided by Context in Colombian Ex-Combatants

  • Carlos Tobón
  • David PinedaEmail author
Chapter

Abstract

Armed conflicts are special scenarios where human behavior could generate psychological and biological adaptations and display emotional exacerbation of violent actions, oriented to handle the highly stressful conditions of these chaotic environments. Context and emotional processing may influence over the executive mechanisms, and then, over the interpretation of social perceptions, and memory about the experiences, which would produce biased responses. Contextual modulation of empathy may represent an adaptive advantage, making behavior more sensitive to different environmental conditions. Experiences acquired in a specific context, as armed conflict, could modify implicit and explicit emotional processes, favoring inadequate responses to a peaceful social context with probably unfair executive planning on the actions, which could be related to the accessibility for available neurophysiological resources of the orbitofrontal circuitries.

Keywords

Executive control Social context Colombian ex-combatants Executive planning Emotional process 

References

  1. Adolph, D., Meister, L., & Pause, B. M. (2013). Context counts! Social anxiety modulates the processing of fearful faces in the context of chemosensory anxiety signals. Frontiers in Human Neuroscience, 7, 283.  https://doi.org/10.3389/fnhum.2013.00283.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12(2), 169–177.  https://doi.org/10.1016/S0959-4388(02)00301-X.PubMedCrossRefGoogle Scholar
  3. Adolphs, R., Damasio, H., Tranel, D., Cooper, G., & Damasio, A. R. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(7), 2683–2690.CrossRefGoogle Scholar
  4. Anaki, D., Brezniak, T., & Shalom, L. (2012). Faces in the face of death: Effects of exposure to life-threatening events and mortality salience on facial expression recognition in combat and noncombat military veterans. Emotion (Washington, D.C.), 12(4), 860–867.  https://doi.org/10.1037/a0029415.PubMedCrossRefGoogle Scholar
  5. Attias, J., Bleich, A., Furman, V., & Zinger, Y. (1996). Event-related potentials in post-traumatic stress disorder of combat origin. Biological Psychiatry, 40(5), 373–381.  https://doi.org/10.1016/0006-3223(95)00419-X.PubMedCrossRefGoogle Scholar
  6. Baez, S., Herrera, E., Villarin, L., Theil, D., Gonzalez-Gadea, M. L., Gomez, P., … Ibañez, A. M. (2013). Contextual social cognition impairments in schizophrenia and bipolar disorder. PloS One, 8(3), e57664.  https://doi.org/10.1371/journal.pone.0057664.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baez, S., Santamaría-García, H., & Ibáñez, A. (2019). Disarming ex-combatants’ minds: Toward situated reintegration process in post-conflict Colombia. Frontiers in Psychology, 10, 73.  https://doi.org/10.3389/fpsyg.2019.00073.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629.  https://doi.org/10.1038/nrn1476.PubMedCrossRefGoogle Scholar
  9. Barkley, R. A. (2001). The executive functions and self-regulation: An evolutionary neuropsychological perspective. Neuropsychology Review, 11(1), 1–29.  https://doi.org/10.1023/A:1009085417776.PubMedCrossRefGoogle Scholar
  10. Barratt, E. S., Stanford, M. S., Dowdy, L., Liebman, M. J., & Kent, T. A. (1999). Impulsive and premeditated aggression: A factor analysis of self-reported acts. Psychiatry Research, 86(2), 163–173.PubMedCrossRefGoogle Scholar
  11. Bayle, D. J., & Taylor, M. J. (2010). Attention inhibition of early cortical activation to fearful faces. Brain Research, 1313, 113–123.  https://doi.org/10.1016/j.brainres.2009.11.060.PubMedCrossRefGoogle Scholar
  12. Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8(6), 551–565.  https://doi.org/10.1162/jocn.1996.8.6.551.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brazil, I. A., Mars, R. B., Bulten, B. H., Buitelaar, J. K., Verkes, R. J., & De Bruijn, E. R. A. (2011). A neurophysiological dissociation between monitoring one’s own and others’ actions in psychopathy. Biological Psychiatry, 69(7), 693–699.  https://doi.org/10.1016/j.biopsych.2010.11.013.PubMedCrossRefGoogle Scholar
  14. Brown, V. M., & Morey, R. A. (2012). Neural systems for cognitive and emotional processing in posttraumatic stress disorder. Frontiers in Psychology, 3, 449.  https://doi.org/10.3389/fpsyg.2012.00449.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Calder, A. J., & Young, A. W. (2005). Understanding the recognition of facial identity and facial expression. Nature Reviews Neuroscience, 6(8), 641–651.  https://doi.org/10.1038/nrn1724.PubMedCrossRefGoogle Scholar
  16. Checa, P., Rodríguez-Bailón, R., & Rueda, M. R. (2008). Neurocognitive and temperamental systems of self-regulation and early adolescents’ social and academic outcomes. Mind, Brain, and Education, 2(4), 177–187.  https://doi.org/10.1111/j.1751-228X.2008.00052.x.CrossRefGoogle Scholar
  17. Chemtob, C. M., Novaco, R. W., Hamada, R. S., & Gross, D. M. (1997). Cognitive-behavioral treatment for severe anger in posttraumatic stress disorder. Journal of Consulting and Clinical Psychology, 65(1), 184–189.PubMedCrossRefGoogle Scholar
  18. Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A., & Phan, K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62(2), 168–178.  https://doi.org/10.1016/j.biopsych.2006.08.024.PubMedCrossRefGoogle Scholar
  19. Couto, B., Sedeño, L., Sposato, L. A., Sigman, M., Riccio, P. M., Salles, A., … Ibanez, A. (2012). Insular networks for emotional processing and social cognition: Comparison of two case reports with either cortical or subcortical involvement. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior.  https://doi.org/10.1016/j.cortex.2012.08.006.PubMedCrossRefGoogle Scholar
  20. Criaud, M., Wardak, C., Ben Hamed, S., Ballanger, B., & Boulinguez, P. (2012). Proactive inhibitory control of response as the default state of executive control. Frontiers in Psychology, 3.  https://doi.org/10.3389/fpsyg.2012.00059.
  21. Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science (New York, N.Y.), 289(5479), 591–594.Google Scholar
  22. de Gelder, B., Van den Stock, J., Meeren, H. K. M., Sinke, C. B. A., Kret, M. E., & Tamietto, M. (2010). Standing up for the body. Recent progress in uncovering the networks involved in the perception of bodies and bodily expressions. Neuroscience and Biobehavioral Reviews, 34(4), 513–527.  https://doi.org/10.1016/j.neubiorev.2009.10.008.CrossRefGoogle Scholar
  23. Decety, J. (2010). The neurodevelopment of empathy in humans. Developmental Neuroscience, 32(4), 257–267.  https://doi.org/10.1159/000317771.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Decety, J., & Cowell, J. M. (2015). Empathy, justice, and moral behavior. AJOB Neuroscience, 6(3), 3–14.  https://doi.org/10.1080/21507740.2015.1047055.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Deffke, I., Sander, T., Heidenreich, J., Sommer, W., Curio, G., Trahms, L., et al. (2007). MEG/EEG sources of the 170-ms response to faces are co-localized in the fusiform gyrus. NeuroImage, 35(4), 1495–1501.  https://doi.org/10.1016/j.neuroimage.2007.01.034.PubMedCrossRefGoogle Scholar
  26. Dougherty, D. D., Rauch, S. L., Deckersbach, T., Marci, C., Loh, R., Shin, L. M., … Fava, M. (2004). Ventromedial prefrontal cortex and amygdala dysfunction during an anger induction positron emission tomography study in patients with major depressive disorder with anger attacks. Archives of General Psychiatry, 61(8), 795–804.  https://doi.org/10.1001/archpsyc.61.8.795.PubMedCrossRefGoogle Scholar
  27. Eder, A. B. (2011). Control of impulsive emotional behaviour through implementation intentions. Cognition and Emotion, 25(3), 478–489.  https://doi.org/10.1080/02699931.2010.527493.PubMedCrossRefGoogle Scholar
  28. Escobar, M. J., Rivera-Rei, A., Decety, J., Huepe, D., Cardona, J. F., Canales-Johnson, A., … Ibañez, A. (2013). Attachment patterns trigger differential neural signature of emotional processing in adolescents. PloS One, 8(8), e70247.  https://doi.org/10.1371/journal.pone.0070247.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Eslinger, P. J. (1998). Neurological and neuropsychological bases of empathy. European Neurology, 39(4), 193–199.PubMedCrossRefGoogle Scholar
  30. Eslinger, P. J., Moore, P., Anderson, C., & Grossman, M. (2011). Social cognition, executive functioning, and neuroimaging correlates of empathic deficits in frontotemporal dementia. The Journal of Neuropsychiatry and Clinical Neurosciences, 23(1), 74–82.  https://doi.org/10.1176/appi.neuropsych.23.1.74.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fernandez-Duque, D., & Johnson, M. L. (2002). Cause and effect theories of attention: The role of conceptual metaphors. Review of General Psychology, 6(2), 153–165.  https://doi.org/10.1037/1089-2680.6.2.153.CrossRefGoogle Scholar
  32. Forbes, C. E., & Grafman, J. (2013). Social neuroscience: The second phase. Frontiers in Human Neuroscience, 7.  https://doi.org/10.3389/fnhum.2013.00020.
  33. Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual Review of Psychology, 67, 641–666.  https://doi.org/10.1146/annurev-psych-122414-033645.PubMedCrossRefGoogle Scholar
  34. Forstmann, B. U., Wagenmakers, E.-J., Eichele, T., Brown, S., & Serences, J. T. (2011). Reciprocal relations between cognitive neuroscience and formal cognitive models: Opposites attract? Trends in Cognitive Sciences, 15(6), 272–279.  https://doi.org/10.1016/j.tics.2011.04.002.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Frühholz, S., Jellinghaus, A., & Herrmann, M. (2011). Time course of implicit processing and explicit processing of emotional faces and emotional words. Biological Psychology, 87(2), 265–274.  https://doi.org/10.1016/j.biopsycho.2011.03.008.CrossRefGoogle Scholar
  36. Gallaway, M. S., Fink, D. S., Millikan, A. M., & Bell, M. R. (2012). Factors associated with physical aggression among US army soldiers. Aggressive Behavior, 38(5), 357–367.  https://doi.org/10.1002/ab.21436.PubMedCrossRefGoogle Scholar
  37. Ghashghaei, H. T., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34(3), 905–923.  https://doi.org/10.1016/j.neuroimage.2006.09.046.PubMedCrossRefGoogle Scholar
  38. Goldstein, S., Naglieri, J. A., Princiotta, D., & Otero, T. M. (2014). Introduction: A history of executive functioning as a theoretical and clinical construct. In S. Goldstein & J. A. Naglieri (Eds.), Handbook of executive functioning (pp. 3–12). New York, NY: Springer.  https://doi.org/10.1007/978-1-4614-8106-5_1.Google Scholar
  39. Grossmann, T. (2010). The development of emotion perception in face and voice during infancy. Restorative Neurology and Neuroscience, 28(2), 219–236.  https://doi.org/10.3233/RNN-2010-0499.PubMedCrossRefGoogle Scholar
  40. Hartley, A. A., Jonides, J., & Sylvester, C.-Y. C. (2011). Dual-task processing in younger and older adults: Similarities and differences revealed by fMRI. Brain and Cognition, 75(3), 281–291.  https://doi.org/10.1016/j.bandc.2011.01.004.PubMedCrossRefGoogle Scholar
  41. Haxby, Hoffman, & Gobbini. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233.Google Scholar
  42. Heilbrun, A. B. (1982). Cognitive models of criminal violence based upon intelligence and psychopathy levels. Journal of Consulting and Clinical Psychology, 50(4), 546–557.  https://doi.org/10.1037/0022-006X.50.4.546.PubMedCrossRefGoogle Scholar
  43. Herringa, R., Phillips, M., Almeida, J., Insana, S., & Germain, A. (2012). Post-traumatic stress symptoms correlate with smaller subgenual cingulate, caudate, and insula volumes in unmedicated combat veterans. Psychiatry Research, 203(2–3), 139–145.  https://doi.org/10.1016/j.pscychresns.2012.02.005.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Herrmann, M. J., Huter, T., Plichta, M. M., Ehlis, A.-C., Alpers, G. W., Mühlberger, A., et al. (2008). Enhancement of activity of the primary visual cortex during processing of emotional stimuli as measured with event-related functional near-infrared spectroscopy and event-related potentials. Human Brain Mapping, 29(1), 28–35.  https://doi.org/10.1002/hbm.20368.PubMedCrossRefGoogle Scholar
  45. Holmes, A., Vuilleumier, P., & Eimer, M. (2003). The processing of emotional facial expression is gated by spatial attention: Evidence from event-related brain potentials. Cognitive Brain Research, 16(2), 174–184.  https://doi.org/10.1016/S0926-6410(02)00268-9.PubMedCrossRefGoogle Scholar
  46. Ibáñez, A., Aguado, J., Baez, S., Huepe, D., Lopez, V., Ortega, R., … Manes, F. (2014). From neural signatures of emotional modulation to social cognition: Individual differences in healthy volunteers and psychiatric participants. Social Cognitive and Affective Neuroscience, 9(7), 939–950.  https://doi.org/10.1093/scan/nst067.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ibañez, A., & Manes, F. (2012). Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology, 78(17), 1354–1362.  https://doi.org/10.1212/WNL.0b013e3182518375.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ibanez, A., Melloni, M., Huepe, D., Helgiu, E., Rivera-Rei, A., Canales-Johnson, A., … Moya, A. (2012). What event-related potentials (ERPs) bring to social neuroscience? Social Neuroscience, 7(6), 632–649.  https://doi.org/10.1080/17470919.2012.691078.PubMedCrossRefGoogle Scholar
  49. Ibanez, A., Urquina, H., Petroni, A., Baez, S., Lopez, V., do Nascimento, M., … Manes, F. (2012). Neural processing of emotional facial and semantic expressions in euthymic bipolar disorder (BD) and its association with theory of mind (ToM). PloS One, 7(10), e46877.  https://doi.org/10.1371/journal.pone.0046877.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jakupcak, M., Conybeare, D., Phelps, L., Hunt, S., Holmes, H. A., Felker, B., … McFall, M. E. (2007). Anger, hostility, and aggression among Iraq and Afghanistan war veterans reporting PTSD and subthreshold PTSD. Journal of Traumatic Stress, 20(6), 945–954.  https://doi.org/10.1002/jts.20258.PubMedCrossRefGoogle Scholar
  51. Kanske, P., Schönfelder, S., & Wessa, M. (2013). Emotional modulation of the attentional blink and the relation to interpersonal reactivity. Frontiers in Human Neuroscience, 7, 641.  https://doi.org/10.3389/fnhum.2013.00641.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 17(11), 4302–4311.CrossRefGoogle Scholar
  53. LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 23(4–5), 727–738.PubMedCrossRefGoogle Scholar
  54. LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73(4), 653–676.  https://doi.org/10.1016/j.neuron.2012.02.004.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Maguen, S., Metzler, T. J., Litz, B. T., Seal, K. H., Knight, S. J., & Marmar, C. R. (2009). The impact of killing in war on mental health symptoms and related functioning. Journal of Traumatic Stress, 22(5), 435–443.  https://doi.org/10.1002/jts.20451.PubMedCrossRefGoogle Scholar
  56. Marsh, A. A., Finger, E. C., Mitchell, D. G. V., Reid, M. E., Sims, C., Kosson, D. S., … Blair, R. J. R. (2008). Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. The American Journal of Psychiatry, 165(6), 712–720.  https://doi.org/10.1176/appi.ajp.2007.07071145.PubMedCrossRefGoogle Scholar
  57. McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1–28.  https://doi.org/10.1146/annurev.neuro.27.070203.144157.PubMedCrossRefGoogle Scholar
  58. Medalla, M., & Barbas, H. (2010). Anterior cingulate synapses in prefrontal areas 10 and 46 suggest differential influence in cognitive control. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(48), 16068–16081.  https://doi.org/10.1523/JNEUROSCI.1773-10.2010.CrossRefGoogle Scholar
  59. Melloni, M., Lopez, V., & Ibanez, A. (2014). Empathy and contextual social cognition. Cognitive, Affective & Behavioral Neuroscience, 14(1), 407–425.  https://doi.org/10.3758/s13415-013-0205-3.CrossRefGoogle Scholar
  60. Miller, M. W., & Litz, B. T. (2004). Emotional-processing in posttraumatic stress disorder II: Startle reflex modulation during picture processing. Journal of Abnormal Psychology, 113(3), 451–463.  https://doi.org/10.1037/0021-843X.113.3.451.PubMedCrossRefGoogle Scholar
  61. Morey, R. A., Gold, A. L., LaBar, K. S., Beall, S. K., Brown, V. M., Haswell, C. C., … McCarthy, G. (2012). Amygdala volume changes with posttraumatic stress disorder in a large case-controlled veteran group. Archives of General Psychiatry, 69(11), 1169–1178.  https://doi.org/10.1001/archgenpsychiatry.2012.50.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Morey, R. A., Petty, C. M., Cooper, D. A., Labar, K. S., & McCarthy, G. (2008). Neural systems for executive and emotional processing are modulated by symptoms of posttraumatic stress disorder in Iraq war veterans. Psychiatry Research, 162(1), 59–72.  https://doi.org/10.1016/j.pscychresns.2007.07.007.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mühlberger, A., Wieser, M. J., Herrmann, M. J., Weyers, P., Tröger, C., & Pauli, P. (2009). Early cortical processing of natural and artificial emotional faces differs between lower and higher socially anxious persons. Journal of Neural Transmission (Vienna, Austria: 1996), 116(6), 735–746.  https://doi.org/10.1007/s00702-008-0108-6.PubMedCrossRefGoogle Scholar
  64. Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8(7), 536–546.  https://doi.org/10.1038/nrn2174.PubMedCrossRefGoogle Scholar
  65. Papez, J. W. (1995). A proposed mechanism of emotion. 1937. The Journal of Neuropsychiatry and Clinical Neurosciences, 7(1), 103–112.Google Scholar
  66. Paschall, M. (2002). Executive cognitive functioning and aggression: A public health perspective. Aggression and Violent Behavior, 7(3), 215–235.  https://doi.org/10.1016/S1359-1789(00)00044-6.CrossRefGoogle Scholar
  67. Passamonti, L., Rowe, J. B., Ewbank, M., Hampshire, A., Keane, J., & Calder, A. J. (2008). Connectivity from the ventral anterior cingulate to the amygdala is modulated by appetitive motivation in response to facial signals of aggression. NeuroImage, 43(3), 562–570.  https://doi.org/10.1016/j.neuroimage.2008.07.045.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976–987.  https://doi.org/10.1038/nrn2277.PubMedCrossRefGoogle Scholar
  69. Pessoa, L. (2010). Emergent processes in cognitive-emotional interactions. Dialogues in Clinical Neuroscience, 12(4), 433–448.PubMedPubMedCentralGoogle Scholar
  70. Petroni, A., Canales-Johnson, A., Urquina, H., Guex, R., Hurtado, E., Blenkmann, A., … Ibañez, A. (2011). The cortical processing of facial emotional expression is associated with social cognition skills and executive functioning: A preliminary study. Neuroscience Letters, 505(1), 41–46.  https://doi.org/10.1016/j.neulet.2011.09.062.PubMedCrossRefGoogle Scholar
  71. Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annual Review of Psychology, 57, 27–53.  https://doi.org/10.1146/annurev.psych.56.091103.070234.PubMedCrossRefGoogle Scholar
  72. Pineda, D. A., Aguirre-Acevedo, D. C., Trujillo, N., Valencia, A. M., Pareja, Á., Tobón, C., … Ibáñez, A. (2013). Dimensions of empathy in ex-combatants of the Colombian armed conflict using a standardized scale. Revista Colombiana de Psiquiatría, 42(1), 9–28.PubMedCrossRefGoogle Scholar
  73. Purves, D., Brannon, E. M., Cabeza, R., Huettel, S. A., LaBar, K. S., Platt, M. L., & Woldorff, M. G. (2008). Principles of cognitive neuroscience. USA: Sinauer Associates.Google Scholar
  74. Ramos, C., Duque-Grajales, J., Rendón, J., Montoya-Betancur, A., Baena, A., Pineda, D., et al. (2018). Changes in resting EEG in Colombian ex-combatants ith antisocial personality disorder. Revista Colombiana De Psiquiatria, 47(2), 90–97.  https://doi.org/10.1016/j.rcp.2017.02.001.PubMedCrossRefGoogle Scholar
  75. Rodrigo, M. J., León, I., Quiñones, I., Lage, A., Byrne, S., & Bobes, M. A. (2011). Brain and personality bases of insensitivity to infant cues in neglectful mothers: An event-related potential study. Development and Psychopathology, 23(1), 163–176.  https://doi.org/10.1017/S0954579410000714.PubMedCrossRefGoogle Scholar
  76. Rueda, M. R., Posner, M. I., & Rothbart, M. K. (2004). Attentional control and self-regulation. Handbook of self-regulation: Research, theory, and applications (pp. 283–300). New York, NY, US: The Guilford Press.Google Scholar
  77. Sebastian, A., Forstmann, B. U., & Matzke, D. (2018). Towards a model-based cognitive neuroscience of stopping—A neuroimaging perspective. Neuroscience and Biobehavioral Reviews, 90, 130–136.  https://doi.org/10.1016/j.neubiorev.2018.04.011.PubMedCrossRefGoogle Scholar
  78. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(9), 2349–2356.  https://doi.org/10.1523/JNEUROSCI.5587-06.2007.PubMedCrossRefGoogle Scholar
  79. Singer, T., Critchley, H. D., & Preuschoff, K. (2009). A common role of insula in feelings, empathy and uncertainty. Trends in Cognitive Sciences, 13(8), 334–340.  https://doi.org/10.1016/j.tics.2009.05.001.PubMedCrossRefGoogle Scholar
  80. Soria Bauser, D., Thoma, P., & Suchan, B. (2012). Turn to me: Electrophysiological correlates of frontal vs. averted view face and body processing are associated with trait empathy. Frontiers in Integrative Neuroscience, 6.  https://doi.org/10.3389/fnint.2012.00106.
  81. Sripada, R. K., King, A. P., Welsh, R. C., Garfinkel, S. N., Wang, X., Sripada, C. S., et al. (2012). Neural dysregulation in posttraumatic stress disorder: Evidence for disrupted equilibrium between salience and default mode brain networks. Psychosomatic Medicine, 74(9), 904–911.  https://doi.org/10.1097/PSY.0b013e318273bf33.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Stanford, M. S., Vasterling, J. J., Mathias, C. W., Constans, J. I., & Houston, R. J. (2001). Impact of threat relevance on P3 event-related potentials in combat-related post-traumatic stress disorder. Psychiatry Research, 102(2), 125–137.PubMedCrossRefGoogle Scholar
  83. Swanson, L. W. (2003). The amygdala and its place in the cerebral hemisphere. Annals of the New York Academy of Sciences, 985, 174–184.PubMedCrossRefGoogle Scholar
  84. Taft, C. T., Kaloupek, D. G., Schumm, J. A., Marshall, A. D., Panuzio, J., King, D. W., & Keane, T. M. (2007). Posttraumatic stress disorder symptoms, physiological reactivity, alcohol problems, and aggression among military veterans. Journal of Abnormal Psychology, 116(3), 498–507.  https://doi.org/10.1037/0021-843X.116.3.498.PubMedCrossRefGoogle Scholar
  85. Taft, C. T., Weatherill, R. P., Scott, J. P., Thomas, S. A., Kang, H. K., & Eckhardt, C. I. (2015). Social information processing in anger expression and partner violence in returning U.S. veterans. Journal of Traumatic Stress, 28(4), 314–321.  https://doi.org/10.1002/jts.22017.PubMedCrossRefGoogle Scholar
  86. Tobón, C., Aguirre-Acevedo, D. C., Velilla, L., Duque, J., Ramos, C. P., & Pineda, D. (2016). Psychiatric, cognitive and emotional profile in ex-combatants of illegal armed groups in Colombia. Revista Colombiana De Psiquiatria, 45(1), 28–36.  https://doi.org/10.1016/j.rcp.2015.07.004.PubMedCrossRefGoogle Scholar
  87. Tobón, C., Ibañez, A., Velilla, L., Duque, J., Ochoa, J., Trujillo, N., … Pineda, D. (2015). Emotional processing in Colombian ex-combatants and its relationship with empathy and executive functions. Social Neuroscience, 10(2), 153–165.  https://doi.org/10.1080/17470919.2014.969406.PubMedCrossRefGoogle Scholar
  88. Trujillo, S., Trujillo, N., Lopez, J. D., Gomez, D., Valencia, S., Rendon, J., … Parra, M. A. (2017). Social cognitive training improves emotional processing and reduces aggressive attitudes in ex-combatants. Frontiers in Psychology, 8, 510.  https://doi.org/10.3389/fpsyg.2017.00510.
  89. Trujillo, S. P., Valencia, S., Trujillo, N., Ugarriza, J. E., Rodríguez, M. V., Rendón, J., … Parra, M. A. (2017). Atypical modulations of N170 component during emotional processing and their links to social behaviors in ex-combatants. Frontiers in Human Neuroscience, 11, 244.  https://doi.org/10.3389/fnhum.2017.00244.
  90. Weippert, M., Rickler, M., Kluck, S., Behrens, K., Bastian, M., Mau-Moeller, A., … Lischke, A. (2018). It’s harder to push, when I have to push hard—Physical exertion and fatigue changes reasoning and decision-making on hypothetical moral dilemmas in males. Frontiers in Behavioral Neuroscience, 12.  https://doi.org/10.3389/fnbeh.2018.00268.
  91. Whitney, C., Kirk, M., O’Sullivan, J., Ralph, M. A. L., & Jefferies, E. (2012). Executive semantic processing is underpinned by a large-scale neural network: Revealing the contribution of left prefrontal, posterior temporal, and parietal cortex to controlled retrieval and selection using TMS. Journal of Cognitive Neuroscience, 24(1), 133–147.  https://doi.org/10.1162/jocn_a_00123.PubMedCrossRefGoogle Scholar
  92. Williams, R. (2006). The psychosocial consequences for children and young people who are exposed to terrorism, war, conflict and natural disasters. Current Opinion in Psychiatry, 19(4), 337–349.  https://doi.org/10.1097/01.yco.0000228751.85828.c1.PubMedCrossRefGoogle Scholar
  93. Yoder, K. J., & Decety, J. (2018). The neuroscience of morality and social decision-making. Psychology, Crime & Law, 24(3), 279–295.  https://doi.org/10.1080/1068316X.2017.1414817.CrossRefGoogle Scholar
  94. Young, M. P., Scannell, J. W., Burns, G. A., & Blakemore, C. (1994). Analysis of connectivity: Neural systems in the cerebral cortex. Reviews in the Neurosciences, 5(3), 227–250.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Grupo Neuropsicología y Conducta—GRUNECO, Facultad de MedicinaUniversidad de Antioquia UdeAMedellínColombia
  2. 2.Grupo Neuropsicología y Conducta—GRUNECO, Facultad de PsicologíaUniversidad de San BuenaventuraMedellínColombia

Personalised recommendations