Skip to main content

Estimating the Parameters of the Waxman Random Graph

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11631))

Included in the following conference series:

Abstract

The Waxman random graph is useful for modelling physical networks where the increased cost of longer links means they are less likely to be built, and thus less numerous. The model has been in continuous use for over three decades with many attempts to match parameters to real networks, but only a few cases where a formal estimator was used. Even then the performance of the estimator was not evaluated. This paper presents both the first evaluation of formal estimators for these graphs, and a new Maximum Likelihood Estimator with O(e) computational complexity where e is the number of edges in the graph, and requiring only link lengths as input, as compared to all other algorithms which are \(\varOmega (n^2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waxman, B.: Routing of multipoint connections. IEEE J. Select. Areas Commun. 6(9), 1617–1622 (1988)

    Article  Google Scholar 

  2. Gilbert, E.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959)

    Article  Google Scholar 

  3. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  4. Fosdick, B.K., Hoff, P.D.: Testing and modeling dependencies between a network and nodal attributes. ArXiv e-prints (2013). http://arxiv.org/abs/1306.4708

  5. Roughan, M., Tuke, J., Parsonage, E.: Estimating the parameters of the Waxman random graph. ArXiv e-prints (2015). http://arxiv.org/abs/1506.07974

  6. Zegura, E.W., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In: IEEE INFOCOM, CA, San Francisco, pp. 594–602 (1996)

    Google Scholar 

  7. Salama, H.F., Reeves, D.S., Viniotis, Y.: Evaluation of multicast routing algorithms for real-time communication on high-speed networks. IEEE J. Sel. Areas Commun. 15, 332–345 (1997)

    Article  Google Scholar 

  8. Verma, S., Pankaj, R.K., Leon-Garcia, A.: QoS based multicast routing algorithms for real time applications. Perform. Eval. 34, 273–294 (1998)

    Article  Google Scholar 

  9. Shaikh, A., Rexford, J., Shin, K.G.: Load-sensitive routing of long-lived IP flows. In: ACM SIGCOMM (1999)

    Article  Google Scholar 

  10. Neve, H.D., Mieghem, P.V.: TAMCRA: a tunable accuracy multiple constraints routing algorithm. Comput. Netw. 23, 667–679 (2000)

    Google Scholar 

  11. Wu, J.-J., Hwang, R.-H., Lu, H.-I.: Multicast routing with multiple QoS constraints in ATM networks. Inf. Sci. 124(1–4), 29–57 (2000). http://www.sciencedirect.com/science/article/pii/S0020025599001024

    Article  Google Scholar 

  12. Guo, L., Matta, I.: Search space reduction in QoS routing. Comput. Netw. 41, 73–88 (2003)

    Article  Google Scholar 

  13. Gunduz, C., Yener, B., Gultekin, S.H.: The cell graphs of cancer. Bioinformatics 20(1), 145–151 (2004)

    Article  Google Scholar 

  14. Carzaniga, A., Rutherford, M.J., Wolf, A.L.: A routing scheme for content-based networking. In: IEEE INFOCOM (2004)

    Google Scholar 

  15. Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining speed-up techniques for shortest-path computations. J. Exp. Algorithmics 10, 2–5 (2005)

    Article  MathSciNet  Google Scholar 

  16. Malladi, S., Prasad, S., Navathe, S.: Improving secure communication policy agreements by building coalitions. In: IEEE Parallel and Distributed Processing Symposium, pp. 1–8, March 2007

    Google Scholar 

  17. Tran, D.A., Pham, C.: PUB-2-SUB: a content-based publish/subscribe framework for cooperative P2P networks. In: Fratta, L., Schulzrinne, H., Takahashi, Y., Spaniol, O. (eds.) NETWORKING 2009. LNCS, vol. 5550, pp. 770–781. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01399-7_60

    Chapter  Google Scholar 

  18. Fang, Y., Chu, F., Mammar, S., Che, A.: Iterative algorithm for lane reservation problem on transportation network. In: 2011 IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 305–310, April 2011

    Google Scholar 

  19. Davis, S., Abbasi, B., Shah, S., Telfer, S., Begon, M.: Spatial analyses of wildlife contact networks. J. R. Soc. Interface 12(102) (2014). http://rsif.royalsocietypublishing.org/content/12/102/20141004.short

    Article  Google Scholar 

  20. Zegura, E.W., Calvert, K.L., Donahoo, M.J.: A quantitative comparison of graph-based models for Internet topology. IEEE/ACM Trans. Netw. 5(6), 770–783 (1997)

    Article  Google Scholar 

  21. Van Mieghem, P.: Paths in the simple random graph and the Waxman graph. Probab. Eng. Inf. Sci. 15, 535–555 (2001). http://dl.acm.org/citation.cfm?id=982639.982646

    MathSciNet  MATH  Google Scholar 

  22. Naldi, M.: Connectivity of Waxman graphs. Comput. Commun. 29, 24–31 (2005)

    Article  Google Scholar 

  23. Snijders, T.A.B., Koskinen, J., Schweinberger, M.: Maximum likelihood estimation for social network dynamics. Ann. Appl. Stat. 4(2), 567–588 (2010). https://doi.org/10.1214/09-AOAS313

    Article  MathSciNet  MATH  Google Scholar 

  24. Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81(395), 832–842 (1986)

    Article  MathSciNet  Google Scholar 

  25. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007). http://www.sciencedirect.com/science/article/pii/S0378873306000372

    Article  Google Scholar 

  26. Lakhina, A., Byers, J.W., Crovella, M., Matta, I.: On the geographic location of Internet resources. In: ACM SIGCOMM Workshop on Internet Measurement (IMW), pp. 249–250. ACM, New York (2002). https://doi.org/10.1145/637201.637240

  27. Kosmidis, K., Havlin, S., Bunde, A.: Structural properties of spatially embedded networks. Europhys. Lett. 82(4) (2008). http://iopscience.iop.org/0295-5075/82/4/48005

    Article  Google Scholar 

  28. Bringmann, K., Keusch, R., Lengler, J.: Geometric inhomogeneous random graphs. ArXiv e-prints, November 2015. https://arxiv.org/abs/1511.00576

  29. Deijfen, M., van der Hofstad, R., Hooghiemstra, G.: Scale-free percolation. ArXiv e-prints, March 2011. https://arxiv.org/abs/1103.0208

  30. Ghosh, B.: Random distance within a rectangle and between two rectangles. Bull. Calcutta Math. Soc. 43(1), 17–24 (1951)

    MathSciNet  MATH  Google Scholar 

  31. Rosenberg, E.: The expected length of a random line segment in a rectangle. Oper. Res. Lett. 32(2), 99–102 (2004). http://www.sciencedirect.com/science/article/pii/S0167637703000725

    Article  MathSciNet  Google Scholar 

  32. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  33. Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Thomson Learning, Pacific Grove (2002)

    MATH  Google Scholar 

  34. Gorman, J.D., Hero, A.O.: Lower bounds for parametric estimation with constraints. IEEE Trans. Inf. Theory 36(6), 1285–1301 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Lakhina et al. for providing the Internet dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Roughan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roughan, M., Tuke, J., Parsonage, E. (2019). Estimating the Parameters of the Waxman Random Graph. In: Avrachenkov, K., Prałat, P., Ye, N. (eds) Algorithms and Models for the Web Graph. WAW 2019. Lecture Notes in Computer Science(), vol 11631. Springer, Cham. https://doi.org/10.1007/978-3-030-25070-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25070-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25069-0

  • Online ISBN: 978-3-030-25070-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics