Skip to main content

Single Ventricle Physiology

  • Chapter
  • First Online:
The Heart and Circulation

Abstract

Hypoplastic left heart syndrome (HLHS) is a rare developmental abnormality of the left-sided heart structures which accounts for 3.8% of congenital cardiac malformations. It comprises a range of defects characterized by a single functional ventricle belonging either to the left or to the right heart complex. A common presentation of HLHS is a small or non-existent left ventricle, stenosis of aortic and mitral valve, and hypoplastic ascending aorta. The circulation is achieved by way of the pulmonary artery which supplies the lungs and the systemic circulation via the ductus arteriosus. In this chapter, the history of staged surgical repair leading to separation of pulmonary and systemic circulations to staged Fontan palliation is reviewed. The success of this procedure attests to the remarkable plasticity of the cardiovascular system and exemplifies the ram-like, flow-restraining function of the heart. How a single, often weakened ventricle can push the blood through the combined resistance of the systemic and pulmonary circulations, as well as the added resistance of the Fontan anastomosis, remains an open question for the pressure-propulsion model.

In whatsoever creature there is lungs, there is likewise in them two ventricles, the right and the left.

William Harvey (1628)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veldtman GR, et al. Cardiovascular adaptation to the Fontan circulation. Congenit Heart Dis. 2017;12(6):699–710.

    Article  PubMed  Google Scholar 

  2. Starr I, Jeffers WA, Meade RH. The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease. Am Heart J. 1943;26(3):291–301.

    Article  Google Scholar 

  3. Bakos AC. The question of the function of the right ventricular myocardium: an experimental study. Circulation. 1950;1(4):724–32.

    Article  Google Scholar 

  4. Kagan A. Dynamic responses of the right ventricle following extensive damage by cauterization. Circulation. 1952;5(6):816–23.

    Article  CAS  PubMed  Google Scholar 

  5. Sawatani S, et al. Ventricular performance following ablation and prosthetic replacement of right ventricular myocardium. ASAIO J. 1974;20(1):629–36.

    Google Scholar 

  6. Hoffman D, et al. Left-to-right ventricular interaction with a noncontracting right ventricle. J Thorac Cardiovasc Surg. 1994;107(6):1496–502.

    Article  CAS  PubMed  Google Scholar 

  7. Sade RM, Castaneda AR. The dispensable right ventricle. Surgery. 1975;77(5):624–31.

    CAS  PubMed  Google Scholar 

  8. Rodbard S, Wagner D. By-passing the right ventricle. Proc Soc Exp Biol Med. 1949;71(1):69–70.

    Article  CAS  PubMed  Google Scholar 

  9. Glenn WWL. Circulatory bypass of the right side of the heart. N Engl J Med. 1958;259(3):117–20.

    Article  CAS  PubMed  Google Scholar 

  10. Mathur M, Glenn WW. Long-term evaluation of cava-pulmonary artery anastomosis. Surgery. 1973;74(6):899–916.

    CAS  PubMed  Google Scholar 

  11. Robicsek F. An epitaph for cavopulmonary anastomosis. Ann Thorac Surg. 1982;34(2):208–20.

    Article  CAS  PubMed  Google Scholar 

  12. Connor JA, Thiagarajan R. Hypoplastic left heart syndrome. Orphanet J Rare Dis. 2007;2(23):1–5.

    Google Scholar 

  13. Hansen DD, Hickey PR. History of anesthesia for congenital heart disease. In: Andropoulos DB, Stayer SA, Russell IA, editors. Anesthesia for congenital heart disease. Malden, MA: Blackwell Futura; 2005. p. 3–16.

    Google Scholar 

  14. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax. 1971;26(3):240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Leval M, et al. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J Thorac Cardiovasc Surg. 1988;96(5):682.

    PubMed  Google Scholar 

  16. Kilner PJ. Valveless pump models that laid a false but fortuitous trail on the way towards the total cavopulmonary connection. Cardiol Young. 2005;15:74.

    Article  PubMed  Google Scholar 

  17. De Leval M. The Fontan circulation: what have we learned? What to expect? Pediatr Cardiol. 1998;19(4):316–20.

    Article  PubMed  Google Scholar 

  18. Gewillig M, Kalis N. Pathophysiological aspects after cavopulmonary anastomosis. Thorac Cardiovasc Surg. 2000;48(06):336–41.

    Article  CAS  PubMed  Google Scholar 

  19. Stewart J, et al. Elevated atrial natriuretic peptide after the Fontan procedure. Circulation. 1987;76(3 Pt 2):III77.

    CAS  PubMed  Google Scholar 

  20. Senzaki H, et al. Ventricular afterload and ventricular work in Fontan circulation. Circulation. 2002;105(24):2885–92.

    Article  PubMed  Google Scholar 

  21. Redington A. The physiology of the Fontan circulation. Prog Pediatr Cardiol. 2006;22(2):179–86.

    Article  Google Scholar 

  22. Myers CD, et al. Mechanisms of systemic adaptation to univentricular Fontan conversion. J Thorac Cardiovasc Surg. 2010;140(4):850–6.e6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gentles TL, et al. Fontan operation in five hundred consecutive patients: factors influencing early and late outcome. J Thorac Cardiovasc Surg. 1997;114(3):376–91.

    Article  CAS  PubMed  Google Scholar 

  24. Jolley M, et al. Fontan physiology revisited. Anesth Analg. 2015;121(1):172–82.

    Article  PubMed  Google Scholar 

  25. La Gerche A, Gewillig M. What limits cardiac performance during exercise in normal subjects and in healthy Fontan patients? Int J Pediatr. 2010;2010:791291.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fogel MA, et al. Caval contribution to flow in the branch pulmonary arteries of Fontan patients with a novel application of magnetic resonance presaturation pulse. Circulation. 1999;99(9):1215–21.

    Article  CAS  PubMed  Google Scholar 

  27. Ohuchi H, et al. Cardiorespiratory response during exercise in patients with cyanotic congenital heart disease with and without a Fontan operation and in patients with congestive heart failure. Int J Cardiol. 1998;66(3):241–51.

    Article  CAS  PubMed  Google Scholar 

  28. Redington AN, Penny D, Shinebourne EA. Pulmonary blood flow after total cavopulmonary shunt. Br Heart J. 1991;65(4):213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rychik J, Cohen MI. Long-term outcome and complications of patients with single ventricle. Prog Pediatr Cardiol. 2002;16(1):89–103.

    Article  Google Scholar 

  30. Akagi T, et al. Ventricular performance before and after Fontan repair for univentricular atrioventricular connection: angiographic and radionuclide assessment. J Am Coll Cardiol. 1992;20(4):920–6.

    Article  CAS  PubMed  Google Scholar 

  31. Driscoll D. Long-term results of the Fontan operation. Pediatr Cardiol. 2007;28(6):438–42.

    Article  CAS  PubMed  Google Scholar 

  32. Witte MH, et al. Lymph circulation in congestive heart failure. Circulation. 1969;39(6):723–33.

    Article  CAS  PubMed  Google Scholar 

  33. Fried A. Die rechte Herzkammer - eine zusammenfassende Betrachtung unter morphologischen, phylogenetischen und haemodynamish-physiologischen Aspecten. In: Bavastro P, Kuemmell HC, editors. Das Herz des Menschen. Stuttgart: Verlag Greies Geistesleben; 1999. p. 189–210.

    Google Scholar 

  34. Inai K, et al. Skeletal muscle hemodynamics and endothelial function in patients after Fontan operation. Am J Cardiol. 2004;93(6):792–7.

    Article  PubMed  Google Scholar 

  35. Varma C, et al. Prevalence of “silent” pulmonary emboli in adults after the Fontan operation. J Am Coll Cardiol. 2003;41(12):2252–8.

    Article  PubMed  Google Scholar 

  36. Gewillig M. The Fontan circulation. Heart. 2005;91(6):839–46.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jacobs ML, et al. Protein-losing enteropathy after Fontan operation: resolution after baffle fenestration. Ann Thorac Surg. 1996;61(1):206–8.

    Article  CAS  PubMed  Google Scholar 

  38. Lemler MS, et al. Fenestration improves clinical outcome of the Fontan procedure. Circulation. 2002;105(2):207–12.

    Article  PubMed  Google Scholar 

  39. Gewillig M, et al. The Fontan circulation: who controls cardiac output? Interact Cardiovasc Thorac Surg. 2010;10(3):428–33.

    Article  PubMed  Google Scholar 

  40. de Leval MR. The Fontan circulation: a challenge to William Harvey? Nat Clin Pract Cardiovasc Med. 2005;2(4):202–8.

    Article  PubMed  Google Scholar 

  41. Nicolson SC, Steven JM. Anesthesia for the patient with single ventricle. In: Andropoulos DB, Stayer SA, Russell IA, editors. Anesthesia for congenital heart disease. Oxford: Wiley Online Library; 2005. p. 356–72.

    Chapter  Google Scholar 

  42. Petersen JW, Felker GM. Inotropes in the management of acute heart failure. Crit Care Med. 2008;36(1):S106–11. https://doi.org/10.1097/01.CCM.0000296273.72952.39.

    Article  CAS  PubMed  Google Scholar 

  43. Kouatli AA, et al. Enalapril does not enhance exercise capacity in patients after Fontan procedure. Circulation. 1997;96(5):1507–12.

    Article  CAS  PubMed  Google Scholar 

  44. Furst B. Fontan physiology revisited. Anesth Analg. 2016;122(2):578–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furst, B. (2020). Single Ventricle Physiology. In: The Heart and Circulation. Springer, Cham. https://doi.org/10.1007/978-3-030-25062-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25062-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25061-4

  • Online ISBN: 978-3-030-25062-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics