Skip to main content

Cardiovascular Response During Exercise

  • Chapter
  • First Online:
The Heart and Circulation
  • 1074 Accesses

Abstract

The physiological events that occur in exercising animals or humans provide a unique insight into the function of the cardiovascular system at the limits of its capacity. A typical response to an incremental exercise consists of doubling of the HR, a four- to fivefold increase in CO and a moderate increase in MAP. Under such conditions, the role of central and peripheral circulations becomes more clearly defined and underscores its importance in control of cardiac output. Increased vascular conductance during maximal aerobic exercise significantly exceeds the theoretical pumping capacity of the heart. The “missing blood volume” is supposedly provided by a hypothetical muscle pump, the existence of which, however, has been questioned. Further discussed are metabolic control of muscle blood flow at rest and during activity; exercise hyperemia and functional sympatholysis; the importance of the red blood cells as sensors and modulators of vascular tone and the role of cytoplasmic ATP and endothelial purinergic receptors in local control of muscle perfusion; adaptation of the heart and of the pulmonary circulation to increased exercise blood flows; metabolic activation of muscle blood flows during exercise and the function of the heart as the organ of restraint; and the role of the fibrous pericardium and of myocardial hypertrophy as physiologic response in providing resistance against overdistension during high cardiac throughputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowland T. The circulatory response to exercise: role of the peripheral pump. Int J Sports Med. 2001;22(8):558–65.

    Article  CAS  PubMed  Google Scholar 

  2. Rowland TW. Circulatory responses to exercise∗. Chest. 2005;127(3):1023–30.

    Article  PubMed  Google Scholar 

  3. Calbet J, Joyner M. Disparity in regional and systemic circulatory capacities: do they affect the regulation of the circulation? Acta Physiol. 2010;199(4):393–406.

    Article  CAS  Google Scholar 

  4. Rowell LB. Ideas about control of skeletal and cardiac muscle blood flow (1876-2003): cycles of revision and new vision. J Appl Physiol. 2004;97(1):384–92.

    Article  PubMed  Google Scholar 

  5. Laughlin MH. Cardiovascular response to exercise. Am J Phys. 1999;277(6 Pt 2):S244–59.

    CAS  Google Scholar 

  6. Saltin B, et al. Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand. 1998;162(3):421–36.

    Article  CAS  PubMed  Google Scholar 

  7. Rowell LB. Human circulation. Regulating during physical stress. New York: Oxford University Press; 1986.

    Google Scholar 

  8. Rowell LB, O'Leary DS, Kellogg DL Jr. Integration of cardiovascular control systems in dynamic exercise. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. Bethesda, MD: American Physiological Society; 1996. p. 778–81.

    Google Scholar 

  9. Barcroft H. Circulation in skeletal muscle. Handbook of Physiology. 1963;2:1353–85.

    Google Scholar 

  10. Lofving B, Mellander S. Some aspects of the basal tone of the blood vessels. Acta Physiol Scand. 1956;37(2–3):134–41.

    Article  CAS  PubMed  Google Scholar 

  11. Forrester T, Lind A. Identification of adenosine triphosphate in human plasma and the concentration in the venous effluent of forearm muscles before, during and after sustained contractions. J Physiol. 1969;204(2):347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delp M, Laughlin M. Regulation of skeletal muscle perfusion during exercise. Acta Physiol Scand. 1998;162(3):411–9.

    Article  CAS  PubMed  Google Scholar 

  13. Laughlin MH, et al. Control of blood flow to cardiac and skeletal muscle during exercise. Hoboken, NJ: Wiley; 1996.

    Book  Google Scholar 

  14. Bloch E, Iberall A. Toward a concept of the functional unit of mammalian skeletal muscle. Am J Phys Regul Integr Comp Phys. 1982;242(5):R411–20.

    CAS  Google Scholar 

  15. Sweeney TE, Sarelius IH. Arteriolar control of capillary cell flow in striated muscle. Circ Res. 1989;64(1):112–20.

    Article  CAS  PubMed  Google Scholar 

  16. Segal SS. Regulation of blood flow in the microcirculation. Microcirculation. 2005;12(1):33–45.

    Article  PubMed  Google Scholar 

  17. Mitchell JH, Kaufman MP, Iwamoto GA. The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annu Rev Physiol. 1983;45(1):229–42.

    Article  CAS  PubMed  Google Scholar 

  18. Mortensen SP, et al. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion. J Appl Physiol. 2009;107(6):1757–62.

    Article  CAS  PubMed  Google Scholar 

  19. Joyner M, Halliwill J. Neurogenic vasodilation in human skeletal muscle: possible role in contraction-induced hyperaemia. Acta Physiol Scand. 2002;168(4):481–8.

    Article  Google Scholar 

  20. Ellsworth ML, et al. The erythrocyte as a regulator of vascular tone. Am J Phys Heart Circ Phys. 1995;269(6):H2155–61.

    CAS  Google Scholar 

  21. Duling BR, Berne RM. Longitudinal gradients in periarteriolar oxygen tension. Circ Res. 1970;27(5):669–78.

    Article  CAS  PubMed  Google Scholar 

  22. Stein JC, Ellsworth ML. Capillary oxygen transport during severe hypoxia: role of hemoglobin oxygen affinity. J Appl Physiol. 1993;75(4):1601–7.

    Article  CAS  PubMed  Google Scholar 

  23. Alexander W. Branko Furst’s radical alternative: is the heart moved by the blood, rather than vice versa? Pharmacy and Therapeutics. 2017;42(1):33–9.

    PubMed  PubMed Central  Google Scholar 

  24. Crecelius AR, Kirby BS, Dinenno FA. Intravascular ATP and the regulation of blood flow and oxygen delivery in humans. Exerc Sport Sci Rev. 2015;43(1):5–13.

    Article  PubMed  Google Scholar 

  25. Jagger JE, et al. Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation. Am J Phys Heart Circ Phys. 2001;49(6):H2833.

    Google Scholar 

  26. Boushel R, et al. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise. J Physiol. 2002;543(2):691–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burnstock G. Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat. 1999;194(3):335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Behringer EJ, Segal SS. Spreading the signal for vasodilatation: implications for skeletal muscle blood flow control and the effects of ageing. J Physiol. 2012;590(24):6277–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grant R. Observations on the blood circulation in voluntary muscle in man. Clin Sci. 1938;3(157):1937–8.

    Google Scholar 

  30. Laughlin MH. Skeletal muscle blood flow capacity: role of muscle pump in exercise hyperemia. Am J Phys Heart Circ Phys. 1987;253(5):H993–H1004.

    CAS  Google Scholar 

  31. Rushmer RF, et al. Continuous measurements of left ventricular dimensions in intact, unanesthetized dogs. Circ Res. 1954;2(1):14–21.

    Article  CAS  PubMed  Google Scholar 

  32. Guyton AC, et al. Instantaneous increase in mean circulatory pressure and cardiac output at onset of muscular activity. Circ Res. 1962;11(3):431–41.

    Article  CAS  PubMed  Google Scholar 

  33. Almen T, Nylander G. Serial phlebography of the normal lower leg during muscular contraction and relaxation. Acta Radiol. 1962;57:264.

    Article  CAS  PubMed  Google Scholar 

  34. Sheriff D, et al. Point: the muscle pump raises muscle blood flow during locomotion. J Appl Physiol. 2005;99(1):371–5.

    Article  PubMed  Google Scholar 

  35. Clifford PS, et al. Counterpoint: the muscle pump is not an important determinant of muscle blood flow during exercise. J Appl Physiol (1985). 2005;99(1):372.

    Google Scholar 

  36. Rothe CF. The muscle pump indeed raises muscle blood flow during locomotion. J Appl Physiol. 2005;99(2):773.

    Article  PubMed  Google Scholar 

  37. Laughlin MH. The muscle pump, what question do we want to answer? J Appl Physiol. 2005;99(2):774.

    Article  PubMed  Google Scholar 

  38. Laughlin MH, Schrage WG. Effects of muscle contraction on skeletal muscle blood flow: when is there a muscle pump? Med Sci Sports Exerc. 1999;31(7):1027.

    Article  CAS  PubMed  Google Scholar 

  39. Valic Z, Buckwalter JB, Clifford PS. Muscle blood flow response to contraction: influence of venous pressure. J Appl Physiol. 2005;98(1):72–6.

    Article  PubMed  Google Scholar 

  40. Corcondilas A, Koroxenidis GT, Shepherd JT. Effect of a brief contraction of forearm muscles on forearm blood flow. J Appl Physiol. 1964;19(1):142–6.

    Article  CAS  PubMed  Google Scholar 

  41. Naik JS, et al. Rapid vasodilation in response to a brief tetanic muscle contraction. J Appl Physiol. 1999;87(5):1741–6.

    Article  CAS  PubMed  Google Scholar 

  42. Tschakovsky ME, et al. Immediate exercise hyperemia in humans is contraction intensity dependent: evidence for rapid vasodilation. J Appl Physiol. 2004;96(2):639–44.

    Article  CAS  PubMed  Google Scholar 

  43. Tschakovsky ME, Sheriff DD. Immediate exercise hyperemia: contributions of the muscle pump vs. rapid vasodilation. J Appl Physiol. 2004;97(2):739–47.

    Article  PubMed  Google Scholar 

  44. Hamann JJ, Buckwalter JB, Clifford PS. Vasodilatation is obligatory for contraction-induced hyperaemia in canine skeletal muscle. J Physiol. 2004;557(3):1013–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tschakovsky ME, et al. Muscle blood-flow dynamics at exercise onset: do the limbs differ? Med Sci Sports Exerc. 2006;38(10):1811.

    Article  PubMed  Google Scholar 

  46. Gonzalez-Alonso J, et al. Haemodynamic responses to exercise, ATP infusion and thigh compression in humans: insight into the role of muscle mechanisms on cardiovascular function. J Physiol. 2008;586(9):2405–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Calbet J, et al. Effects of ATP-induced leg vasodilation on VO2 peak and leg O2 extraction during maximal exercise in humans. Am J Phys Regul Integr Comp Phys. 2006;291(2):R447–53.

    CAS  Google Scholar 

  48. Rosenmeier JB, Hansen J, González-Alonso J. Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J Physiol. 2004;558(1):351–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mortensen SP, et al. Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique. J Physiol. 2011;589(7):1847–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ellsworth ML, et al. Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology. 2009;24(2):107–16.

    Article  CAS  PubMed  Google Scholar 

  51. Sprague RS, Stephenson AH, Ellsworth ML. Red not dead: signaling in and from erythrocytes. Trends in Endocrinology & Metabolism. 2007;18(9):350–5.

    Article  CAS  Google Scholar 

  52. Pittman RN. Erythrocytes: surveyors as well as purveyors of oxygen? Am J Phys Heart Circ Phys. 2010;298(6):H1637–8.

    CAS  Google Scholar 

  53. Ellsworth ML. Red blood cell-derived ATP as a regulator of skeletal muscle perfusion. Med Sci Sports Exerc. 2004;36(1):35.

    Article  CAS  PubMed  Google Scholar 

  54. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88(3):1009–86.

    Article  CAS  PubMed  Google Scholar 

  55. Miyazaki S, et al. Changes of left ventricular diastolic function in exercising dogs without and with ischemia. Circulation. 1990;81(3):1058–70.

    Article  CAS  PubMed  Google Scholar 

  56. Rowland T. Echocardiography and circulatory response to progressive endurance exercise. Sports Med. 2008;38(7):541–51.

    Article  PubMed  Google Scholar 

  57. Rowland T. Endurance athletes stroke volume response to progressive exercise: a critical review. Sports Med. 2009;39(8):687–95.

    Article  PubMed  Google Scholar 

  58. Levine B, et al. Left ventricular pressure-volume and frank-Starling relations in endurance athletes. Implications for orthostatic tolerance and exercise performance. Circulation. 1991;84(3):1016–23.

    Article  CAS  PubMed  Google Scholar 

  59. Carlsson M, et al. Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Phys Heart Circ Phys. 2007;292(3):H1452–9.

    CAS  Google Scholar 

  60. Slordahl SA, et al. Atrioventricular plane displacement in untrained and trained females. Med Sci Sports Exerc. 2004;36(11):1871.

    Article  PubMed  Google Scholar 

  61. Ross J, et al. Adrenergic control of the force-frequency relation. Circulation. 1995;92(8):2327–32.

    Article  PubMed  Google Scholar 

  62. Linden R. The size of the heart. Cardioscience. 1994;5(4):225.

    CAS  PubMed  Google Scholar 

  63. Lauboeck H. The conditions of mitral valve closure. J Biomed Eng. 1980;2(2):93–6.

    Article  CAS  PubMed  Google Scholar 

  64. Lauboeck H. Echocardiographic study of the isovolumetric contraction time. J Biomed Eng. 1980;2(4):281–4.

    Article  CAS  PubMed  Google Scholar 

  65. Oxborough D, et al. Dilatation and dysfunction of the right ventricle immediately after Ultra endurance Exercise Clinical perspective exploratory insights from conventional two-dimensional and speckle tracking echocardiography. Circ Cardiovasc Imaging. 2011;4(3):253–63.

    Article  PubMed  Google Scholar 

  66. Hammond HK, et al. Heart size and maximal cardiac output are limited by the pericardium. Am J Phys Heart Circ Phys. 1992;263(6):H1675–81.

    CAS  Google Scholar 

  67. Stray-Gundersen J, et al. The effect of pericardiectomy on maximal oxygen consumption and maximal cardiac output in untrained dogs. Circ Res. 1986;58(4):523–30.

    Article  CAS  PubMed  Google Scholar 

  68. Naylor LH, et al. The athletes heart: a contemporary appraisal of the Morganroth hypothesis. Sports Med. 2008;38(1):69–90.

    Article  PubMed  Google Scholar 

  69. Fagard RH, Unit CR. Impact of different sports and training on cardiac structure and function. Cardiol Clin. 1997;15(3):397–412.

    Article  CAS  PubMed  Google Scholar 

  70. D'Andrea A, et al. Range of right heart measurements in top-level athletes: the training impact. Int J Cardiol. 2011;

    Google Scholar 

  71. Skalik R, F.B. E-J Cardiol Pract 2017;14:1–16.

    Google Scholar 

  72. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349(11):1064–75.

    Article  CAS  PubMed  Google Scholar 

  73. Sengupta PP, et al. Twist mechanics of the left ventricle:: principles and application. JACC Cardiovasc Imaging. 2008;1(3):366–76.

    Article  PubMed  Google Scholar 

  74. Tischler M, Niggel J. Left ventricular systolic torsion and exercise in normal hearts. J Am Soc Echocardiogr. 2003;16(6):670–4.

    Article  PubMed  Google Scholar 

  75. Notomi Y, et al. Enhanced ventricular untwisting during exercise. Circulation. 2006;113(21):2524–33.

    Article  PubMed  Google Scholar 

  76. Zocalo Y, et al. Assessment of training-dependent changes in the left ventricle torsion dynamics of professional soccer players using speckle-tracking echocardiography. in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. 2007. IEEE.

    Google Scholar 

  77. Hyman AL. Effects of large increases in pulmonary blood flow on pulmonary venous pressure. J Appl Physiol. 1969;27(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  78. Lovering AT, et al. Transpulmonary passage of 99mTc macroaggregated albumin in healthy humans at rest and during maximal exercise. J Appl Physiol. 2009;106(6):1986–92.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Reeves JT, Linehan JH, Stenmark KR. Distensibility of the normal human lung circulation during exercise. Am J Phys Lung Cell Mol Phys. 2005;288(3):L419–25.

    CAS  Google Scholar 

  80. Warren GL, et al. Red blood cell pulmonary capillary transit time during exercise in athletes. Med Sci Sports Exerc. 1991;23(12):1353.

    Article  CAS  PubMed  Google Scholar 

  81. Kovacs G, et al. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009;34(4):888–94.

    Article  CAS  PubMed  Google Scholar 

  82. Bossone E, et al. Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension. J Am Coll Cardiol. 1999;33(6):1662–6.

    Article  CAS  PubMed  Google Scholar 

  83. Argiento P, et al. Exercise stress echocardiography for the study of the pulmonary circulation. Eur Respir J. 2010;35(6):1273–8.

    Article  CAS  PubMed  Google Scholar 

  84. Bidart CM, et al. The noninvasive evaluation of exercise-induced changes in pulmonary artery pressure and pulmonary vascular resistance. J Am Soc Echocardiogr. 2007;20(3):270–5.

    Article  PubMed  Google Scholar 

  85. Eldridge MW, et al. Exercise-induced intrapulmonary arteriovenous shunting in healthy humans. J Appl Physiol. 2004;97(3):797–805.

    Article  PubMed  Google Scholar 

  86. Wetter TJ, et al. Effects of exhaustive endurance exercise on pulmonary gas exchange and airway function in women. J Appl Physiol. 2001;91(2):847–58.

    Article  CAS  PubMed  Google Scholar 

  87. Wagner PD, et al. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol. 1986;61(1):260–70.

    Article  CAS  PubMed  Google Scholar 

  88. Groves BM, et al. Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol. 1987;63(2):521–30.

    Article  CAS  PubMed  Google Scholar 

  89. West JB. Left ventricular filling pressures during exercise. Chest. 1998;113(6):1695–7.

    Article  CAS  PubMed  Google Scholar 

  90. Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985;366(1):233–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rådegran G, Blomstrand E, Saltin B. Peak muscle perfusion and oxygen uptake in humans: importance of precise estimates of muscle mass. J Appl Physiol. 1999;87(6):2375–80.

    Article  PubMed  Google Scholar 

  92. Richardson RS, et al. Determinants of maximal exercise VO2 during single leg knee-extensor exercise in humans. Am J Phys Heart Circ Phys. 1995;268(4):H1453–61.

    CAS  Google Scholar 

  93. Calbet JAL, et al. Maximal muscular vascular conductances during whole body upright exercise in humans. J Physiol. 2004;558(1):319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saltin B. Hemodynamic adaptations to exercise. Am J Cardiol. 1985;55(10):D42–7.

    Article  Google Scholar 

  95. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345(8):588.

    Article  CAS  PubMed  Google Scholar 

  96. Joyner MJ. Exercise hyperemia: waiting for the reductionists? Am J Phys Heart Circ Phys. 2006;291(3):H1032–3.

    CAS  Google Scholar 

  97. Neilan TG, et al. Myocardial adaptation to short-term high-intensity exercise in highly trained athletes. J Am Soc Echocardiogr. 2006;19(10):1280–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furst, B. (2020). Cardiovascular Response During Exercise. In: The Heart and Circulation. Springer, Cham. https://doi.org/10.1007/978-3-030-25062-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25062-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25061-4

  • Online ISBN: 978-3-030-25062-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics