Skip to main content

Early Embryo Circulation

  • Chapter
  • First Online:
The Heart and Circulation
  • 1010 Accesses

Abstract

Over the past several decades, the search for the unifying paradigm between the form and function of the early vertebrate embryo heart has focused on genetic patterns as the blueprints for early heart formation, enhanced by phylogenetic and morphologic observations. More recently, however, there has been a resurgence of interest in epigenetic factors such as intracardiac flow patterns and fluid forces as significant factors in early embryo cardiogenesis and vascular formation. The availability of new techniques such as confocal microscopy, phase contrast magnetic resonant imaging, digital particle velocimetry, and high-frequency ultrasonographic imaging, used for in vivo observation of embryonic flow dynamics, have provided new insights into the early embryo hemodynamics. The existing evidence no longer supports the accepted mode of heart’s peristaltic blood propulsion and has called for a radical re-evaluation of the traditionally accepted model of circulation.

Whoever says that the heart as a pump drives the circulation, does not consider that this so-called pump itself arises out of the blood.

Eugen Kolisko (1922)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fishman MC, Chien KR. Fashioning the vertebrate heart: earliest embryonic decisions. Development. 1997;124(11):2099–117.

    CAS  PubMed  Google Scholar 

  2. Warren KS, et al. The genetic basis of cardiac function: dissection by zebrafish (Danio rerio) screens. Philos Trans R Soc Lond B Biol Sci. 2000;355(1399):939–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fishman MC, Olson EN. Parsing the heart: genetic minireview modules for organ assembly. Cell. 1997;91:153–6.

    Article  CAS  PubMed  Google Scholar 

  4. Männer J. Ontogenetic development of the helical heart: concepts and facts. Eur J Cardiothorac Surg. 2006;29:S69–74.

    Article  PubMed  Google Scholar 

  5. Grosberg A, Gharib M. Physiology in phylogeny: modeling of mechanical driving forces in cardiac development. Heart Fail Clin. 2008;4(3):247–59.

    Article  PubMed  Google Scholar 

  6. Sedmera D, et al. Developmental patterning of the myocardium. Anat Rec. 2000;258(4):319–37.

    Article  CAS  PubMed  Google Scholar 

  7. Sedmera D. Function and form in the developing cardiovascular system. Cardiovasc Res. 2011;91(2):252–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hove JR, et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421(6919):172–7.

    Article  CAS  PubMed  Google Scholar 

  9. Lucitti JL, et al. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development. 2007;134(18):3317–26.

    Article  CAS  PubMed  Google Scholar 

  10. Buschmann I, et al. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development. 2010;137(13):2187–96.

    Article  CAS  PubMed  Google Scholar 

  11. le Noble F, et al. Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovasc Res. 2005;65(3):619–28.

    Article  PubMed  CAS  Google Scholar 

  12. le Noble F, et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development. 2004;131(2):361–75.

    Article  PubMed  CAS  Google Scholar 

  13. Hove JAYR. Quantifying cardiovascular flow dynamics during early development. Pediatr Res. 2006;60(1):6–13.

    Article  PubMed  Google Scholar 

  14. Forouhar AS, et al. The embryonic vertebrate heart tube is a dynamic suction pump. Science. 2006;312(5774):751–3.

    Article  CAS  PubMed  Google Scholar 

  15. Männer J, Wessel A, Yelbuz TM. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn. 2010;239(4):1035–46.

    Article  PubMed  Google Scholar 

  16. McQuinn TC, et al. High frequency ultrasonographic imaging of avian cardiovascular development. Dev Dyn. 2007;236(12):3503–13.

    Article  PubMed  Google Scholar 

  17. Hu N, Clark E. Hemodynamics of the stage 12 to stage 29 chick embryo. Circ Res. 1989;65(6):1665–70.

    Article  CAS  PubMed  Google Scholar 

  18. MacLennan MJ, Keller BB. Umbilical arterial blood flow in the mouse embryo during development and following acutely increased heart rate. Ultrasound Med Biol. 1999;25(3):361–70.

    Article  CAS  PubMed  Google Scholar 

  19. Steiner R. Lecture 3; May 24, 1920. In: The redemption of thinking. Spring Valley: Anthroposophic Press; 1983.

    Google Scholar 

  20. Steiner R. Lecture 5; April 17, 1920. In: Man: hieroglyph of the universe. London: Rudolf Steiner Press; 1972.

    Google Scholar 

  21. Rohen JW. Functional morphology: the dynamic wholeness of the human organism. Hillsdale: Adonis Press; 2007.

    Google Scholar 

  22. Schad W. Aus der vergleichende Anatomie des Herzens. Der Merkurstab. 2006;59(2):104–11.

    Google Scholar 

  23. Woernle M. The embryonic development of the cardiovascular system. In: Holdrege C, editor. The dynamic heart and circulation; 2002. p. 115–43.

    Google Scholar 

  24. Manteuffel-Szoege L. Energy sources of blood circulation and the mechanical action of the heart. Thorax. 1960;15(1):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Manteuffel-Szoege L. Ueber die Bewegung des Blutes. Stuttgart: Verlag Freies Geistesleben, GmbH Stuttgart; 1977.

    Google Scholar 

  26. Ferkowicz MJ, Yoder MC. Blood island formation: longstanding observations and modern interpretations. Exp Hematol. 2005;33(9):1041–7.

    Article  PubMed  Google Scholar 

  27. Ferguson J, Kelley RW, Patterson C. Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arterioscler Thromb Vasc Biol. 2005;25(11):2246–54.

    Article  CAS  PubMed  Google Scholar 

  28. Zaffran S, Frasch M. Early signals in cardiac development. Circ Res. 2002;91(6):457–69.

    Article  CAS  PubMed  Google Scholar 

  29. Jin SW, Patterson C. The opening act. Arterioscler Thromb Vasc Biol. 2009;29(5):623–9.

    Article  CAS  PubMed  Google Scholar 

  30. Moretti A, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127(6):1151–65.

    Article  CAS  PubMed  Google Scholar 

  31. Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006;11(5):723–32.

    Article  CAS  PubMed  Google Scholar 

  32. Qyang Y, et al. The renewal and differentiation of isl1+ cardiovascular progenitors are controlled by a wnt/[beta]-catenin pathway. Cell Stem Cell. 2007;1(2):165–79.

    Article  CAS  PubMed  Google Scholar 

  33. Manner J. The anatomy of cardiac looping: a step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations. Clin Anat. 2009;22(1):21–35.

    Article  PubMed  Google Scholar 

  34. Patten BM, Kramer TC. The initiation of contraction in the embryonic chick heart. Am J Anat. 1933;53(3):349–75.

    Article  Google Scholar 

  35. Sedmera D, et al. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec. 1999;254(2):238–52.

    Article  CAS  PubMed  Google Scholar 

  36. Männer J, et al. High resolution in vivo imaging of the cross sectional deformations of contracting embryonic heart loops using optical coherence tomography. Dev Dyn. 2008;237(4):953–61.

    Article  PubMed  Google Scholar 

  37. Männer J, et al. In vivo imaging of the cyclic changes in cross sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: a contribution to the understanding of the ontogenesis of cardiac pumping function. Dev Dyn. 2009;238(12):3273–84.

    Article  PubMed  Google Scholar 

  38. Carlson BM. Patten’s foundations of embryology. New York: McGraw-Hill; 1988.

    Google Scholar 

  39. Peshkovsky C, Totong R, Yelon D. Dependence of cardiac trabeculation on neuregulin signaling and blood flow in zebrafish. Dev Dyn. 2011;240(2):446–56.

    Article  PubMed  Google Scholar 

  40. Auman HJ, et al. Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol. 2007;5(3):e53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Trinh LA, Stainier DYR. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell. 2004;6(3):371–82.

    Article  CAS  PubMed  Google Scholar 

  42. Burggren WW. What is the purpose of the embryonic heart beat? Or how facts can ultimately prevail over physiological dogma. Physiol Biochem Zool. 2004;77(3):333–45.

    Article  PubMed  Google Scholar 

  43. Hu N, et al. Effect of atrial natriuretic peptide on diastolic filling in the stage 21 chick embryo. Pediatr Res. 1995;37(4):465–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furst, B. (2020). Early Embryo Circulation. In: The Heart and Circulation. Springer, Cham. https://doi.org/10.1007/978-3-030-25062-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25062-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25061-4

  • Online ISBN: 978-3-030-25062-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics