Skip to main content

Insulin Resistance and the Kidney in Youth

  • Chapter
  • First Online:
Book cover Insulin Resistance

Part of the book series: Contemporary Endocrinology ((COE))

  • 889 Accesses

Abstract

Diabetic kidney disease (DKD) remains a leading cause of end-stage renal disease (ESRD) and mortality in the Western world. Early DKD, including albuminuria and hyperfiltration, are common in adolescents with type 1 diabetes (T1D) and type 2 diabetes (T2D). Because DKD is characterized by a long clinically silent period without overt signs of disease, a major challenge in preventing DKD is the difficulty in identifying high-risk patients at an early stage when injury may be reversible and responsive to therapy.

The relationship between insulin sensitivity and DKD is increasingly recognized in both T1D and T2D, but the underlying mechanisms remain unclear. In this review, we examine the literature on insulin sensitivity and renal health and focus on data in youth. We also summarize the potential pathways and mechanisms underlying the relationship between insulin sensitivity and DKD and how these may be exploited as therapeutic targets in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, et al. United States Renal Data System 2011 Annual Data Report: atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis. [Editorial Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. 2012;59(1 Suppl 1):A7, e1–420.

    Google Scholar 

  2. Saran R, Li Y, Robinson B, Abbott KC, Agodoa LY, Ayanian J, et al. US Renal Data System 2015 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis. [Editorial]. 2016;67(3 Suppl 1):A7–8.

    Article  Google Scholar 

  3. Bjornstad P, Cherney DZ, Maahs DM, Nadeau KJ. Diabetic kidney disease in adolescents with type 2 diabetes: new insights and potential therapies. Curr Diab Rep. 2016;16(2):11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Saran R, Li Y, Robinson B, Abbott KC, Agodoa LY, Ayanian J, et al. US Renal Data System 2015 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2016;67(3 Suppl 1):Svii, S1–305.

    Google Scholar 

  5. Alleyn CR, Volkening LK, Wolfson J, Rodriguez-Ventura A, Wood JR, Laffel LM. Occurrence of microalbuminuria in young people with type 1 diabetes: importance of age and diabetes duration. Diabet Med. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2010;27(5):532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eppens MC, Craig ME, Cusumano J, Hing S, Chan AK, Howard NJ, et al. Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care. [Comparative Study Multicenter Study]. 2006;29(6):1300–6.

    Article  PubMed  Google Scholar 

  7. Kiess W, Bottner A, Bluher S, Raile K, Galler A, Kapellen TM. Type 2 diabetes mellitus in children and adolescents--the beginning of a renal catastrophe? Nephrol Dial Transplant. [Editorial Research Support, Non-U.S. Gov’t]. 2004;19(11):2693–6.

    Article  PubMed  Google Scholar 

  8. Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the diabetes control and complications trial cohort. Diabetes Care. [Multicenter Study Research Support, U.S. Gov’t, P.H.S.]. 1999;22(1):99–111.

    Article  Google Scholar 

  9. TODAY Study Group. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. [Randomized Controlled Trial Research Support, N.I.H., Extramural]. 2013;36(6):1735–41.

    Article  PubMed Central  CAS  Google Scholar 

  10. Yokoyama H, Okudaira M, Otani T, Takaike H, Miura J, Saeki A, et al. Existence of early-onset NIDDM Japanese demonstrating severe diabetic complications. Diabetes Care. 1997;20(5):844–7.

    Article  CAS  PubMed  Google Scholar 

  11. Yokoyama H, Okudaira M, Otani T, Watanabe C, Takaike H, Miuira J, et al. High incidence of diabetic nephropathy in early-onset Japanese NIDDM patients. Risk analysis. Diabetes Care. 1998;21(7):1080–5.

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez BL, Dabelea D, Liese AD, Fujimoto W, Waitzfelder B, Liu L, et al. Prevalence and correlates of elevated blood pressure in youth with diabetes mellitus: the SEARCH for diabetes in youth study. J Pediatr. [Multicenter Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.]. 2010;157(2):245–51 e1.

    Article  PubMed  Google Scholar 

  13. Maahs DM, Snively BM, Bell RA, Dolan L, Hirsch I, Imperatore G, et al. Higher prevalence of elevated albumin excretion in youth with type 2 than type 1 diabetes: the SEARCH for Diabetes in Youth study. Diabetes Care. [Multicenter Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.]. 2007;30(10):2593–8.

    Article  PubMed  Google Scholar 

  14. Al-Saeed AH, Constantino MI, Molyneaux L, D’Souza M, Limacher-Gisler F, Luo C, et al. An inverse relationship between age of type 2 diabetes onset and complication risk and mortality: the impact of youth-onset type 2 diabetes. Diabetes Care. 2016;39(5):823–9.

    Article  CAS  PubMed  Google Scholar 

  15. TODAY Study Group. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. 2013;36(6):1735–41.

    Article  PubMed Central  CAS  Google Scholar 

  16. Mottl AK, Divers J, Dabelea D, Maahs DM, Dolan L, Pettitt D, et al. The dose-response effect of insulin sensitivity on albuminuria in children according to diabetes type. Pediatr Nephrol. 2016;31(6):933–40.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mottl AK, Lauer A, Dabelea D, Maahs DM, D’Agostino RB Jr, Dolan LM, et al. Albuminuria according to status of autoimmunity and insulin sensitivity among youth with type 1 and type 2 diabetes. Diabetes Care. 2013;36(11):3633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bjornstad P, Maahs DM, Cherney DZ, Cree-Green M, West A, Pyle L, et al. Insulin sensitivity is an important determinant of renal health in adolescents with type 2 diabetes. Diabetes Care. 2014;37(11):3033–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neugarten J, Golestaneh L. Blood oxygenation level-dependent MRI for assessment of renal oxygenation. Int J Nephrol Renovasc Dis. 2014;7:421–35.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39(7):1115–22.

    Article  CAS  PubMed  Google Scholar 

  22. Drummond K, Mauer M. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes. [Multicenter Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 2002;51(5):1580–7.

    Article  CAS  PubMed  Google Scholar 

  23. Bjornstad P, Roncal C, Milagres T, Pyle L, Lanaspa MA, Bishop FK, et al. Hyperfiltration and uricosuria in adolescents with type 1 diabetes. Pediatr Nephrol. 2016;31(5):787–93.

    Article  PubMed  Google Scholar 

  24. Bjornstad P, Cherney DZ, Snell-Bergeon JK, Pyle L, Rewers M, Johnson RJ, et al. Rapid GFR decline is associated with renal hyperfiltration and impaired GFR in adults with type 1 diabetes. Nephrol Dial Transplant. 2015;30(10):1706–11.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cherney DZ, Miller JA, Scholey JW, Nasrallah R, Hebert RL, Dekker MG, et al. Renal hyperfiltration is a determinant of endothelial function responses to cyclooxygenase 2 inhibition in type 1 diabetes. Diabetes Care. 2010;33(6):1344–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Premaratne E, Macisaac RJ, Tsalamandris C, Panagiotopoulos S, Smith T, Jerums G. Renal hyperfiltration in type 2 diabetes: effect of age-related decline in glomerular filtration rate. Diabetologia. 2005;48(12):2486–93.

    Article  CAS  PubMed  Google Scholar 

  27. Troya MI, Bonet J, Salinas I, Torres F, Bonal J, Sanmarti A, et al. Early intensive treatment improves outcomes in patients with glomerular hyperfiltration and type 2 diabetes. Med Clin (Barc). 2016;146(2):55–60.

    Article  Google Scholar 

  28. Cherney DZ, Reich HN, Jiang S, Har R, Nasrallah R, Hebert RL, et al. Hyperfiltration and the effect of nitric oxide inhibition on renal and endothelial function in humans with uncomplicated type 1 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol. 2012;303(7):R710–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. [Research Support, Non-U.S. Gov’t Review]. 2005;28(1):164–76.

    Article  PubMed  Google Scholar 

  30. Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 2003;348(23):2285–93.

    Article  CAS  PubMed  Google Scholar 

  31. Molitch ME, Steffes M, Sun W, Rutledge B, Cleary P, de Boer IH, et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2010;33(7):1536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krolewski AS, Niewczas MA, Skupien J, Gohda T, Smiles A, Eckfeldt JH, et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014;37(1):226–34.

    Article  CAS  PubMed  Google Scholar 

  33. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care. 2004;27(1):195–200.

    Article  PubMed  Google Scholar 

  34. Okada R, Yasuda Y, Tsushita K, Wakai K, Hamajima N, Matsuo S. Glomerular hyperfiltration in prediabetes and prehypertension. Nephrol Dial Transplant. [Comparative Study Research Support, Non-U.S. Gov’t]. 2012;27(5):1821–5.

    Article  CAS  PubMed  Google Scholar 

  35. Mogensen CE. Early glomerular hyperfiltration in insulin-dependent diabetics and late nephropathy. Scand J Clin Lab Invest. [Research Support, Non-U.S. Gov’t]. 1986;46(3):201–6.

    Article  CAS  PubMed  Google Scholar 

  36. Mogensen CE. Glomerular hyperfiltration in human diabetes. Diabetes Care. [Review]. 1994;17(7):770–5.

    Article  CAS  PubMed  Google Scholar 

  37. Ruggenenti P, Porrini EL, Gaspari F, Motterlini N, Cannata A, Carrara F, et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. [Randomized Controlled Trial]. 2012;35(10):2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc. 1985;33(4):278–85.

    Article  CAS  PubMed  Google Scholar 

  39. Rifkin DE, Shlipak MG, Katz R, Fried LF, Siscovick D, Chonchol M, et al. Rapid kidney function decline and mortality risk in older adults. Arch Intern Med. [Research Support, N.I.H., Extramural]. 2008;168(20):2212–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shlipak MG, Katz R, Kestenbaum B, Siscovick D, Fried L, Newman A, et al. Rapid decline of kidney function increases cardiovascular risk in the elderly. J Am Soc Nephrol. [Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2009;20(12):2625–30.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Orchard TJ, Secrest AM, Miller RG, Costacou T. In the absence of renal disease, 20 year mortality risk in type 1 diabetes is comparable to that of the general population: a report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. [Research Support, N.I.H., Extramural]. 2010;53(11):2312–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Groop PH, Thomas MC, Moran JL, Waden J, Thorn LM, Makinen VP, et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. [Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2009;58(7):1651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Solis-Herrera C, Triplitt CL, Lynch JL. Nephropathy in youth and young adults with type 2 diabetes. Curr Diab Rep. 2014;14(2):456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes. [Research Support, Non-U.S. Gov’t]. 2006;55(6):1832–9.

    Article  CAS  PubMed  Google Scholar 

  45. Chen J, Muntner P, Hamm LL, Fonseca V, Batuman V, Whelton PK, et al. Insulin resistance and risk of chronic kidney disease in nondiabetic US adults. J Am Soc Nephrol. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 2003;14(2):469–77.

    Article  CAS  PubMed  Google Scholar 

  46. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med. [Review]. 1999;341(15):1127–33.

    Article  CAS  PubMed  Google Scholar 

  47. Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95(2):513–21.

    Article  CAS  PubMed  Google Scholar 

  48. Nadeau KJ, Zeitler PS, Bauer TA, Brown MS, Dorosz JL, Draznin B, et al. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J Clin Endocrinol Metab. 2009;94(10):3687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martin FI, Stocks AE. Insulin sensitivity and vascular disease in insulin-dependent diabetics. Br Med J. 1968;2(5597):81–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yip J, Mattock MB, Morocutti A, Sethi M, Trevisan R, Viberti G. Insulin resistance in insulin-dependent diabetic patients with microalbuminuria. Lancet. [Research Support, Non-U.S. Gov’t]. 1993;342(8876):883–7.

    Article  CAS  PubMed  Google Scholar 

  51. Orchard TJ, Chang YF, Ferrell RE, Petro N, Ellis DE. Nephropathy in type 1 diabetes: a manifestation of insulin resistance and multiple genetic susceptibilities? Further evidence from the Pittsburgh Epidemiology of Diabetes Complication Study. Kidney Int. 2002;62(3):963–70.

    Article  CAS  PubMed  Google Scholar 

  52. Duca LM, Maahs DM, Schauer IE, Bergman BC, Nadeau KJ, Bjornstad P, et al. Development and validation of a method to estimate insulin sensitivity in patients with and without type 1 diabetes. J Clin Endocrinol Metab. 2016;101(2):686–95.

    Article  CAS  PubMed  Google Scholar 

  53. Bjornstad P, Maahs DM, Duca LM, Pyle L, Rewers M, Johnson RJ, et al. Estimated insulin sensitivity predicts incident micro- and macrovascular complications in adults with type 1 diabetes over 6 years: the coronary artery calcification in type 1 diabetes study. J Diabetes Complications. 2016;30(4):586–90.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bjornstad P, Maahs DM, Johnson RJ, Rewers M, Snell-Bergeon JK. Estimated insulin sensitivity predicts regression of albuminuria in type 1 diabetes. Diabet Med. 2015;32(2):257–61.

    Article  CAS  PubMed  Google Scholar 

  55. Bjornstad P, Snell-Bergeon JK, Rewers M, Jalal D, Chonchol MB, Johnson RJ, et al. Early diabetic nephropathy: a complication of reduced insulin sensitivity in type 1 diabetes. Diabetes Care. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2013;36(11):3678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dart AB, Sellers EA, Martens PJ, Rigatto C, Brownell MD, Dean HJ. High burden of kidney disease in youth-onset type 2 diabetes. Diabetes Care. [Comparative Study Research Support, Non-U.S. Gov’t]. 2012;35(6):1265–71.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hsu CC, Chang HY, Huang MC, Hwang SJ, Yang YC, Tai TY, et al. Association between insulin resistance and development of microalbuminuria in type 2 diabetes: a prospective cohort study. Diabetes Care. [Research Support, Non-U.S. Gov’t]. 2011;34(4):982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bjornstad P, Nehus E, El Ghormli L, Bacha F, Libman IM, McKay S, et al. Insulin sensitivity and diabetic kidney disease in children and adolescents with type 2 diabetes: an observational analysis of data from the TODAY clinical trial. Am J Kidney Dis. 2018;71(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  59. Bjornstad P, Laffel L, Arslanian S, Bacha F, El Ghormli L, Libman L, et al. Insulin sensitivity and hyperfiltration in adolescents with type 2 diabetes (T2D) in the TODAY clinical trial. E-theater oral presentation at American Diabetes Association Scientific Sessions 2016. New Orleans, 10–14 June 2016.

    Google Scholar 

  60. Parvanova AI, Trevisan R, Iliev IP, Dimitrov BD, Vedovato M, Tiengo A, et al. Insulin resistance and microalbuminuria: a cross-sectional, case-control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes. [Multicenter Study]. 2006;55(5):1456–62.

    Article  CAS  Google Scholar 

  61. De Cosmo S, Minenna A, Ludovico O, Mastroianno S, Di Giorgio A, Pirro L, et al. Increased urinary albumin excretion, insulin resistance, and related cardiovascular risk factors in patients with type 2 diabetes: evidence of a sex-specific association. Diabetes Care. [Multicenter Study Research Support, Non-U.S. Gov’t]. 2005;28(4):910–5.

    Article  PubMed  Google Scholar 

  62. Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest. [Review]. 2006;116(2):288–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cherney DZ, Scholey JW, Miller JA. Insights into the regulation of renal hemodynamic function in diabetic mellitus. Curr Diabetes Rev. [Research Support, Non-U.S. Gov’t Review]. 2008;4(4):280–90.

    Article  CAS  PubMed  Google Scholar 

  64. Catalano C, Muscelli E, Quinones Galvan A, Baldi S, Masoni A, Gibb I, et al. Effect of insulin on systemic and renal handling of albumin in nondiabetic and NIDDM subjects. Diabetes. 1997;46(5):868–75.

    Article  CAS  PubMed  Google Scholar 

  65. Cohen AJ, McCarthy DM, Stoff JS. Direct hemodynamic effect of insulin in the isolated perfused kidney. Am J Physiol. [In Vitro Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 1989;257(4 Pt 2):F580–5.

    CAS  PubMed  Google Scholar 

  66. Tucker BJ, Anderson CM, Thies RS, Collins RC, Blantz RC. Glomerular hemodynamic alterations during acute hyperinsulinemia in normal and diabetic rats. Kidney Int. [Research Support, U.S. Gov’t, P.H.S.]. 1992;42(5):1160–8.

    Article  CAS  PubMed  Google Scholar 

  67. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2006;440(7086):944–8.

    Article  CAS  PubMed  Google Scholar 

  68. Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int. 2008;74(7):867–72.

    Article  CAS  PubMed  Google Scholar 

  69. Fine LG, Orphanides C, Norman JT. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl. 1998;65:S74–8.

    CAS  PubMed  Google Scholar 

  70. Sgouralis I, Layton AT. Mathematical modeling of renal hemodynamics in physiology and pathophysiology. Math Biosci. 2015;264:8–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Layton AT, Vallon V, Edwards A. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am J Physiol Renal Physiol. 2015;308(12):F1343–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes. 2000;49(5):677–83.

    Article  CAS  PubMed  Google Scholar 

  73. Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116(4):434–48.

    Article  CAS  PubMed  Google Scholar 

  74. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.

    Article  CAS  PubMed  Google Scholar 

  75. Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 2016;24(2):256–68.

    Article  CAS  PubMed  Google Scholar 

  76. Gilbert RE. SGLT2 inhibitors: beta blockers for the kidney? Lancet Diabetes Endocrinol. 2016;4(10):814.

    Article  PubMed  Google Scholar 

  77. Leung PS. Mechanisms of protective effects induced by blockade of the renin-angiotensin system: novel role of the pancreatic islet angiotensin-generating system in type 2 diabetes. Diabet Med. 2007;24(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  78. Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep. 2013;15(1):59–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Group NS, Holman RR, Haffner SM, McMurray JJ, Bethel MA, Holzhauer B, et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1463–76.

    Article  Google Scholar 

  80. Group NS, McMurray JJ, Holman RR, Haffner SM, Bethel MA, Holzhauer B, et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1477–90.

    Article  Google Scholar 

  81. Preiss D, Thomas LE, Wojdyla DM, Haffner SM, Gill JM, Yates T, et al. Prospective relationships between body weight and physical activity: an observational analysis from the NAVIGATOR study. BMJ Open. 2015;5(8):e007e901.

    Article  Google Scholar 

  82. Lonn EM, Gerstein HC, Sheridan P, Smith S, Diaz R, Mohan V, et al. Effect of ramipril and of rosiglitazone on carotid intima-media thickness in people with impaired glucose tolerance or impaired fasting glucose: STARR (STudy of Atherosclerosis with Ramipril and Rosiglitazone). J Am Coll Cardiol. 2009;53(22):2028–35.

    Article  CAS  PubMed  Google Scholar 

  83. Giani JF, Mayer MA, Munoz MC, Silberman EA, Hocht C, Taira CA, et al. Chronic infusion of angiotensin-(1-7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. Am J Physiol Endocrinol Metab. 2009;296(2):E262–71.

    Article  CAS  PubMed  Google Scholar 

  84. Bankir L, Bouby N, Ritz E. Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat Rev Nephrol. [Review]. 2013;9(4):223–39.

    Article  CAS  PubMed  Google Scholar 

  85. Clark WF, Sontrop JM, Huang SH, Moist L, Bouby N, Bankir L. Hydration and chronic kidney disease progression: a critical review of the evidence. Am J Nephrol. 2016;43(4):281–92.

    Article  CAS  PubMed  Google Scholar 

  86. Bardoux P, Martin H, Ahloulay M, Schmitt F, Bouby N, Trinh-Trang-Tan MM, et al. Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: study in vasopressin-deficient Brattleboro rats. Proc Natl Acad Sci U S A. 1999;96(18):10397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Enhorning S, Hedblad B, Nilsson PM, Engstrom G, Melander O. Copeptin is an independent predictor of diabetic heart disease and death. Am Heart J. 2015;169(4):549–56.e1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tasevska I, Enhorning S, Persson M, Nilsson PM, Melander O. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart. 2016;102(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  89. Zerbe RL, Vinicor F, Robertson GL. Plasma vasopressin in uncontrolled diabetes mellitus. Diabetes. [Research Support, U.S. Gov’t, P.H.S.]. 1979;28(5):503–8.

    Article  CAS  PubMed  Google Scholar 

  90. Roussel R, El Boustany R, Bouby N, Potier L, Fumeron F, Mohammedi K, et al. Plasma copeptin, AVP gene variants, and incidence of type 2 diabetes in a cohort from the community. J Clin Endocrinol Metab. 2016;101(6):2432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Riphagen IJ, Boertien WE, Alkhalaf A, Kleefstra N, Gansevoort RT, Groenier KH, et al. Copeptin, a surrogate marker for arginine vasopressin, is associated with cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-31). Diabetes Care. 2013;36(10):3201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bjornstad P, Maahs DM, Jensen T, Lanaspa MA, Johnson RJ, Rewers M, et al. Elevated copeptin is associated with atherosclerosis and diabetic kidney disease in adults with type 1 diabetes. J Diabetes Complications. 2016;30(6):1093–6.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Velho G, El Boustany R, Lefevre G, Mohammedi K, Fumeron F, Potier L, et al. Plasma copeptin, kidney outcomes, ischemic heart disease, and all-cause mortality in people with long-standing type 1 diabetes. Diabetes Care. 2016;39:2288–95.

    Article  CAS  PubMed  Google Scholar 

  94. Bouby N, Ahloulay M, Nsegbe E, Dechaux M, Schmitt F, Bankir L. Vasopressin increases glomerular filtration rate in conscious rats through its antidiuretic action. J Am Soc Nephrol. 1996;7(6):842–51.

    CAS  PubMed  Google Scholar 

  95. Bardoux P, Bichet DG, Martin H, Gallois Y, Marre M, Arthus MF, et al. Vasopressin increases urinary albumin excretion in rats and humans: involvement of V2 receptors and the renin-angiotensin system. Nephrol Dial Transplant. 2003;18(3):497–506.

    Article  CAS  PubMed  Google Scholar 

  96. Enhorning S, Struck J, Wirfalt E, Hedblad B, Morgenthaler NG, Melander O. Plasma copeptin, a unifying factor behind the metabolic syndrome. J Clin Endocrinol Metab. 2011;96(7):E1065–72.

    Article  PubMed  Google Scholar 

  97. Enhorning S, Wang TJ, Nilsson PM, Almgren P, Hedblad B, Berglund G, et al. Plasma copeptin and the risk of diabetes mellitus. Circulation. 2010;121(19):2102–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Enhorning S, Bankir L, Bouby N, Struck J, Hedblad B, Persson M, et al. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmo Diet and Cancer Study cardiovascular cohort. Int J Obes (Lond). 2013;37(4):598–603.

    Article  CAS  Google Scholar 

  99. Saleem U, Khaleghi M, Morgenthaler NG, Bergmann A, Struck J, Mosley TH Jr, et al. Plasma carboxy-terminal provasopressin (copeptin): a novel marker of insulin resistance and metabolic syndrome. J Clin Endocrinol Metab. 2009;94(7):2558–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Enhorning S, Sjogren M, Hedblad B, Nilsson PM, Struck J, Melander O. Genetic vasopressin 1b receptor variance in overweight and diabetes mellitus. Eur J Endocrinol. 2016;174(1):69–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Pawlyk AC, Giacomini KM, McKeon C, Shuldiner AR, Florez JC. Metformin pharmacogenomics: current status and future directions. Diabetes. 2014;63(8):2590–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vella S, Buetow L, Royle P, Livingstone S, Colhoun HM, Petrie JR. The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia. [Research Support, Non-U.S. Gov’t Review]. 2010;53(5):809–20.

    Article  CAS  PubMed  Google Scholar 

  103. Nadeau KJ, Chow K, Alam S, Lindquist K, Campbell S, McFann K, et al. Effects of low dose metformin in adolescents with type I diabetes mellitus: a randomized, double-blinded placebo-controlled study. Pediatr Diabetes. 2015;16:196–203.

    Article  CAS  PubMed  Google Scholar 

  104. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. [Clinical Trial Clinical Trial, Phase I Clinical Trial, Phase II Clinical Trial, Phase III Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. 1995;333(9):541–9.

    Article  CAS  PubMed  Google Scholar 

  105. Beisswenger PJ, Howell SK, Touchette AD, Lal S, Szwergold BS. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes. [Clinical Trial Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 1999;48(1):198–202.

    Article  CAS  PubMed  Google Scholar 

  106. Nagi DK, Yudkin JS. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. A study of two ethnic groups. Diabetes Care. [Clinical Trial Comment Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. 1993;16(4):621–9.

    Article  CAS  PubMed  Google Scholar 

  107. Giugliano D, Quatraro A, Consoli G, Minei A, Ceriello A, De Rosa N, et al. Metformin for obese, insulin-treated diabetic patients: improvement in glycaemic control and reduction of metabolic risk factors. Eur J Clin Pharmacol. [Clinical Trial Randomized Controlled Trial]. 1993;44(2):107–12.

    Article  CAS  PubMed  Google Scholar 

  108. Landin K, Tengborn L, Smith U. Treating insulin resistance in hypertension with metformin reduces both blood pressure and metabolic risk factors. J Intern Med. [Research Support, Non-U.S. Gov’t]. 1991;229(2):181–7.

    Article  CAS  PubMed  Google Scholar 

  109. August P, Hardison RM, Hage FG, Marroquin OC, McGill JB, Rosenberg Y, et al. Change in albuminuria and eGFR following insulin sensitization therapy versus insulin provision therapy in the BARI 2D study. Clin J Am Soc Nephrol. [Research Support, N.I.H., Extramural]. 2014;9(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  110. Bypass Angioplasty Revascularization Investigation 2 Diabetes Study Group. Baseline characteristics of patients with diabetes and coronary artery disease enrolled in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. Am Heart J. [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2008;156(3):528–36, 536.e1–5.

    Google Scholar 

  111. Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group, Lachin JM, White NH, Hainsworth DP, Sun W, Cleary PA, Nathan DM. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes. 2015;64:631–42.

    Article  CAS  Google Scholar 

  112. de Boer IH, Rue TC, Cleary PA, Lachin JM, Molitch ME, Steffes MW, et al. Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort. Arch Intern Med. [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural]. 2011;171(5):412–20.

    Article  PubMed  PubMed Central  Google Scholar 

  113. de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME, Steffes MW, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural]. 2011;365(25):2366–76.

    Article  PubMed  CAS  Google Scholar 

  114. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  115. Purnell JQ, Hokanson JE, Marcovina SM, Steffes MW, Cleary PA, Brunzell JD. Effect of excessive weight gain with intensive therapy of type 1 diabetes on lipid levels and blood pressure: results from the DCCT. Diabetes Control and Complications Trial. JAMA. [Clinical Trial Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 1998;280(2):140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural]. 2005;353(25):2643–53.

    Article  PubMed  Google Scholar 

  117. Maahs DM, Daniels SR, de Ferranti SD, Dichek HL, Flynn J, Goldstein BI, et al. Cardiovascular disease risk factors in youth with diabetes mellitus: a scientific statement from the American Heart Association. Circulation. 2014;130:1532–58.

    Article  PubMed  Google Scholar 

  118. Bjornstad P, Schäfer M, Truong U, Cree-Green M, Pyle L, Baumgartner A, Garcia Reyes Y, Maniatis A, Nayak S, Wadwa RP, Browne LP, Reusch JEB, Nadeau KJ. Metformin improves insulin sensitivity and vascular health in youth with type 1 diabetes mellitus. Circulation. 2018;138(25):2895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Petrie JR, Chaturvedi N, Ford I, Hramiak I, Hughes AD, Jenkins AJ, E Klein B, Klein R, Ooi TC, Rossing P, Sattar N, Stehouwer CD, Colhoun HM, REMOVAL Trial Team. Metformin in adults with type 1 diabetes: design and methods of Reducing with MetfOrmin Vascular Adverse Lesions (REMOVAL): an international multicentre trial. Diabetes Obes Metab. 2017;19(4):509–16. https://doi.org/10.1111/dom.12840. Epub 2017 Feb 17.

    Article  CAS  PubMed  Google Scholar 

  120. Petrie JR, Chaturvedi N, Ford I, Brouwers M, Greenlaw N, Tillin T, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Defronzo RA. Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care. [Editorial Research Support, Non-U.S. Gov’t Review]. 2011;34(4):789–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bell DS. Why does quick-release bromocriptine decrease cardiac events? Diabetes Obes Metab. [Review]. 2011;13(10):880–4.

    Article  CAS  PubMed  Google Scholar 

  123. Bjornstad P, Skrtic M, Lytvyn Y, Maahs DM, Johnson RJ, Cherney DZ. The Gomez’ equations and renal hemodynamic function in kidney disease research. Am J Physiol Renal Physiol. 2016;311(5):F967–75. https://doi.org/10.1152/ajprenal.00415.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Prasad PV, Wei L, Dunkle E, Zhou Y, Sprague SM, Investigators C. Magnetic resonance imaging sensitive to hypoxia and fibrosis in a multi-center study of chronic kidney disease. Abstract accepted for American Society of Nephrology Kidney Week; 2016.

    Google Scholar 

  125. Skrtic M, Lytvyn Y, Bjornstad P, Reich H, Scholey JW, Yip P, et al. The influence of sex on hyperfiltration in patients with uncomplicated type 1 diabetes. Am J Physiol Renal Physiol. 2017;312:F599–606.

    Article  CAS  PubMed  Google Scholar 

  126. Li LP, Tan H, Thacker J, Li W, Zhou Y, Kohn O, et al. Evaluation of renal blood flow in chronic kidney disease using arterial spin labeling perfusion MRI. Kidney Int Rep. 2017;2:36–43.

    Article  PubMed  Google Scholar 

  127. Korner A, Eklof AC, Celsi G, Aperia A. Increased renal metabolism in diabetes. Mechanism and functional implications. Diabetes. 1994;43(5):629–33.

    Article  CAS  PubMed  Google Scholar 

  128. Bjornstad P, Cherney D, Maahs DM. Early diabetic nephropathy in type 1 diabetes: new insights. Curr Opin Endocrinol Diabetes Obes. 2014;21(4):279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Collins AJ, Foley RN, Herzog C, Chavers B, Gilbertson D, Ishani A, et al. US Renal Data System 2010 Annual Data Report. Am J Kidney Dis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2011;57(1 Suppl 1):A8, e1–526.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petter Bjornstad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bjornstad, P., Cherney, D.Z. (2020). Insulin Resistance and the Kidney in Youth. In: Zeitler, P., Nadeau, K. (eds) Insulin Resistance. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-25057-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25057-7_14

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-25055-3

  • Online ISBN: 978-3-030-25057-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics