Skip to main content

Two Characterizations of Finite-State Dimension

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11651))

Abstract

In this paper we provide two equivalent characterizations of the notion of finite-state dimension introduced by Dai, Lathrop, Lutz and Mayordomo [7]. One of them uses Shannon’s entropy of non-aligned blocks and generalizes old results of Pillai [12] and Niven – Zuckerman [11]. The second characterizes finite-state dimension in terms of superadditive functions that satisfy some calibration condition (in particular, superadditive upper bounds for Kolmogorov complexity). The use of superadditive bounds allows us to prove a general sufficient condition for normality that easily implies old results of Champernowne [5], Besicovitch [1], Copeland and Erdös [6], and also a recent result of Calude, Staiger and Stephan [4].

A. Shen—On leave from IITP RAS.

Supported by RaCAF ANR-15-CE40-0016-01 grant. The article was prepared within the framework of the HSE University Basic Research Program and funded by the Russian Academic Excellence Project ‘5-100’.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In fact, Champernowne spoke about decimal notation and sequences of digits, but this does not make a big difference.

  2. 2.

    More precisely, we should speak not about the probability of a given block, since the same k-bit block may appear in several positions, but about the probability of its appearance in a given position. Formally speaking, we use the following obvious fact: if we apply some function to two random variables, the statistical difference between them may only decrease. Here the function forgets the position of a block.

  3. 3.

    This is a technical condition needed to avoid infinities in the logarithms.

References

  1. Besicovitch, A.: The asymptotic distribution of the numerals in the decimal representation of the squares of the natural numbers. Math. Z. 39(1), 146–156 (1935). https://doi.org/10.1007/BF01201350

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourke, C., Hitchcock, J.M., Vinodchandran, N.: Entropy rates and finite-state dimension. Theor. Comput. Sci. 349(3), 392–406 (2005). https://doi.org/10.1016/j.tcs.2005.09.040

    Article  MathSciNet  MATH  Google Scholar 

  3. Calude, C.S., Salomaa, K., Roblot, T.K.: Finite state complexity. Theor. Comput. Sci. 412(41), 5668–5677 (2011). https://doi.org/10.1016/j.tcs.2011.06.021

    Article  MathSciNet  MATH  Google Scholar 

  4. Calude, C.S., Staiger, L., Stephan, F.: Finite state incompressible infinite sequences. Inf. Comput. 247, 23–36 (2016). https://doi.org/10.1016/j.ic.2015.11.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Champernowne, D.G.: The construction of decimals normal in the scale of ten. J. London Math. Soc. 1(4), 254–260 (1933). https://doi.org/10.1112/jlms/s1-8.4.254

    Article  MathSciNet  MATH  Google Scholar 

  6. Copeland, A.H., Erdös, P.: Note on normal numbers. Bull. Am. Math. Soc. 52(10), 857–860 (1946). https://doi.org/10.1090/S0002-9904-1946-08657-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theor. Comput. Sci. 310(1–3), 1–33 (2004). https://doi.org/10.1016/S0304-3975(03)00244-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Lutz, J.H.: Dimension in complexity classes. SIAM J. Comput. 32(5), 1236–1259 (2003). https://doi.org/10.1137/S0097539701417723

    Article  MathSciNet  MATH  Google Scholar 

  9. Lutz, J.H.: The dimensions of individual strings and sequences. Inf. Comput. 187(1), 49–79 (2003). https://doi.org/10.1016/S0890-5401(03)00187-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inf. Process. Lett. 84(1), 1–3 (2002). https://doi.org/10.1016/S0020-0190(02)00343-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Niven, I., Zuckerman, H., et al.: On the definition of normal numbers. Pac. J. Math. 1(1), 103–109 (1951). https://doi.org/10.2140/pjm.1951.1.103

    Article  MathSciNet  MATH  Google Scholar 

  12. Pillai, S.: On normal numbers. Proc. Indian Acad. Sci. Sect. A 12(2), 179–184 (1940). https://doi.org/10.1007/BF03173913

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen, A.: Automatic kolmogorov complexity and normality revisited. In: Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 418–430. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-8_33

    Chapter  Google Scholar 

  14. Shen, A., Uspensky, V.A., Vereshchagin, N.: Kolmogorov Complexity and Algorithmic Randomness, vol. 220. American Mathematical Society (2017). https://doi.org/10.1090/surv/220

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kozachinskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozachinskiy, A., Shen, A. (2019). Two Characterizations of Finite-State Dimension. In: Gąsieniec, L., Jansson, J., Levcopoulos, C. (eds) Fundamentals of Computation Theory. FCT 2019. Lecture Notes in Computer Science(), vol 11651. Springer, Cham. https://doi.org/10.1007/978-3-030-25027-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25027-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25026-3

  • Online ISBN: 978-3-030-25027-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics