Skip to main content

Bivariate B-Splines from Convex Pseudo-circle Configurations

  • Conference paper
  • First Online:
Book cover Fundamentals of Computation Theory (FCT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11651))

Included in the following conference series:

Abstract

An order-k univariate B-spline is a parametric curve defined over a set S of at least \(k+2\) real parameters, called knots. Such a B-spline can be obtained as a linear combination of basic B-splines, each of them being defined over a subset of \(k+2\) consecutive knots of S, called a configuration of S.

In the bivariate setting, knots are pairs of reals and basic B-splines are defined over configurations of \(k+3\) knots. Among these configurations, the Delaunay configurations introduced by Neamtu in 2001 gave rise to the first bivariate B-splines that retain the fundamental properties of univariate B-splines. An order-k Delaunay configuration is characterized by a circle that passes through three knots and contains k knots in its interior.

In order to construct a wider variety of bivariate B-splines satisfying the same fundamental properties, Liu and Snoeyink proposed, in 2007, an algorithm to generate configurations. Even if experimental results indicate that their algorithm generates indeed valid configurations, they only succeeded in proving it up to \(k=3\). Until now, no proof has been given for greater k.

In this paper we first show that, if we replace the circles in Neamtu’s definition by maximal families of convex pseudo-circles, then we obtain configurations that satisfy the same fundamental properties as Delaunay configurations. We then prove that these configurations are precisely the ones generated by the algorithm of Liu and Snoeyink, establishing thereby the validity of their algorithm for all k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P.K., Sharir, M., Welzl, E.: Algorithms for center and Tverberg points. ACM Trans. Algorithms 5(1), 5:1–5:20 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Andrzejak, A., Fukuda, K.: Optimization over k-set polytopes and efficient k-set enumeration. In: Dehne, F., Sack, J.-R., Gupta, A., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 1–12. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48447-7_1

    Chapter  MATH  Google Scholar 

  3. Andrzejak, A., Welzl, E.: In between \(k\)-sets, \(j\)-facets, and \(i\)-faces: \((i, j)\)-partitions. Discrete Comput. Geom. 29, 105–131 (2003)

    Article  MathSciNet  Google Scholar 

  4. Aurenhammer, F., Schwarzkopf, O.: A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams. Internat. J. Comput. Geom. Appl. 2, 363–381 (1992)

    Article  MathSciNet  Google Scholar 

  5. de Boor, C.: Splines as linear combinations of B-splines. a survey. In: Lorentz, G.G., Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory II, pp. 1–47. Academic Press, New York (1976)

    Google Scholar 

  6. de Boor, C.: Topics in multivariate approximation theory. In: Turner, P.R. (ed.) Topics in Numerical Analysis. LNM, vol. 965, pp. 39–78. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0063200

    Chapter  Google Scholar 

  7. Cao, J., Li, X., Wang, G., Qin, H.: Surface reconstruction using bivariate simplex splines on Delaunay configurations. Comput. Graph. 33(3), 341–350 (2009)

    Article  Google Scholar 

  8. Chevallier, N., Fruchard, A., Schmitt, D., Spehner, J.C.: Separation by convex pseudo-circles. In: proceedings of the 30th Annual Symposium on Computational Geometry, SOCG 2014, pp. 444–453. ACM, New York (2014)

    Google Scholar 

  9. Dahmen, W., Micchelli, C.A.: Recent progress in multivariate splines. In: Chui, C., Schumaker, L., Ward, J. (eds.) Approximation Theory IV, pp. 27–121. Academic Press, New York (1983)

    Google Scholar 

  10. Edelsbrunner, H., Nikitenko, A.: Poisson-Delaunay mosaics of order k. Discrete Comput. (2018). https://doi.org/10.1007/s00454-018-0049-2

    Article  MATH  Google Scholar 

  11. El Oraiby, W., Schmitt, D., Spehner, J.C.: Centroid triangulations from k-sets. Internat. J. Comput. Geom. Appl. 21(06), 635–659 (2011)

    Article  MathSciNet  Google Scholar 

  12. Hansen, M.S., Larsen, R., Glocker, B., Navab, N.: Adaptive parametrization of multivariate B-splines for image registration. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  13. Liu, Y., Snoeyink, J.: Bivariate B-splines from centroid triangulations. In: Computational and Conformal Geometry (2007). http://www.math.sunysb.edu/~ccg2007/snoeyink.ppt

  14. Liu, Y., Snoeyink, J.: Quadratic and cubic B-splines by generalizing higher-order Voronoi diagrams. In: Proceedings of ACM Symposium on Computational Geometry, pp. 150–157 (2007)

    Google Scholar 

  15. Micchelli, C.A.: A constructive approach to kergin interpolation in \(\mathbb{R}^{k}\): multivariate B-splines and Lagrange interpolation. Rocky Mt. J. Math. 10, 485–497 (1980)

    Article  MathSciNet  Google Scholar 

  16. Neamtu, M.: What is the natural generalization of univariate splines to higher dimensions? In: Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 355–392 (2001)

    Google Scholar 

  17. Neamtu, M.: Delaunay configurations and multivariate splines: a generalization of a result of B. N. Delaunay. Trans. Amer. Soc. 359, 2993–3004 (2007)

    Article  MathSciNet  Google Scholar 

  18. Schmitt, D., Spehner, J.C.: On Delaunay and Voronoi diagrams of order \(k\) in the plane. In: Proceedings of 3rd Canadian Conference on Computational Geometry, pp. 29–32 (1991)

    Google Scholar 

  19. Schmitt, D., Spehner, J.C.: \(k\)-set polytopes and order-\(k\) Delaunay diagrams. In: Proceedings of the 3rd International Symposium on Voronoi Diagrams in Science and Engineering, pp. 173–185 (2006)

    Google Scholar 

  20. Zhang, Y., Cao, J., Chen, Z., Zeng, X.: Surface reconstruction using simplex splines on feature-sensitive configurations. Comput. Aided Geom. Design 50, 14–28 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Schmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmitt, D. (2019). Bivariate B-Splines from Convex Pseudo-circle Configurations. In: Gąsieniec, L., Jansson, J., Levcopoulos, C. (eds) Fundamentals of Computation Theory. FCT 2019. Lecture Notes in Computer Science(), vol 11651. Springer, Cham. https://doi.org/10.1007/978-3-030-25027-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25027-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25026-3

  • Online ISBN: 978-3-030-25027-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics