Advertisement

Fault-Tolerant Parallel Scheduling of Arbitrary Length Jobs on a Shared Channel

  • Marek Klonowski
  • Dariusz R. Kowalski
  • Jarosław MirekEmail author
  • Prudence W. H. Wong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11651)

Abstract

We study the problem of scheduling n jobs on m identical, fault-prone machines f of which are prone to crashes by an adversary, where communication takes place via a multiple access channel without collision detection. Performance is measured by the total number of available machine steps during the whole execution (work). Our goal is to study the impact of preemption (i.e., interrupting the execution of a job and resuming it later by the same or different machine) and failures on the work performance of job processing. We identify features that determine the difficulty of the problem, and in particular, show that the complexity is asymptotically smaller when preemption is allowed.

References

  1. 1.
    Bar-Noy, A., Naor, J., Schieber, B.: Pushing dependent data in clients-providers-servers systems. Wirel. Netw. 9(5), 421–430 (2003)CrossRefGoogle Scholar
  2. 2.
    Chlebus, B.S.: Randomized communication in radio networks. In: Pardalos, P.M., Rajasekaran, S., Reif, J.H., Rolim, J.D.P. (eds.) Handbook on Randomized Computing, vol. 1. Kluwer Academic Publisher (2001)Google Scholar
  3. 3.
    Chlebus, B.S., De Prisco, R., Shvartsman, A.A.: Performing tasks on synchronous restartable message-passing processors. Distrib. Comput. 14(1), 49–64 (2001)CrossRefGoogle Scholar
  4. 4.
    Chlebus, B.S., Gasieniec, L., Kowalski, D.R., Shvartsman, A.A.: Bounding work and communication in robust cooperative computation. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 295–310. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36108-1_20CrossRefGoogle Scholar
  5. 5.
    Chlebus, B.S., Kowalski, D.R.: Randomization helps to perform independent tasks reliably. Random Struct. Algorithms 24(1), 11–41 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chlebus, B.S., Kowalski, D.R., Lingas, A.: Performing work in broadcast networks. Distrib. Comput. 18(6), 435–451 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    Coffman, E.G., Garey, M.R.: Proof of the 4/3 conjecture for preemptive vs. nonpreemptive two-processor scheduling. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC 1991, pp. 241–248. ACM, New York (1991)Google Scholar
  8. 8.
    De Prisco, R., Mayer, A., Yung, M.: Time-optimal message-efficient work performance in the presence of faults. In: Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing, PODC 1994, pp. 161–172. ACM, New York (1994)Google Scholar
  9. 9.
    Dwork, C., Halpern, J.Y., Waarts, O.: Performing work efficiently in the presence of faults. SIAM J. Comput. 27(5), 1457–1491 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Galil, Z., Mayer, A., Yung, M.: Resolving message complexity of byzantine agreement and beyond. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, FOCS 1995, p. 724. IEEE Computer Society, Washington, DC (1995)Google Scholar
  11. 11.
    Gallager, R.G.: A perspective on multiaccess channels. IEEE Trans. Inf. Theory 31, 124–142 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Georgiou, C., Kowalski, D.R., Shvartsman, A.A.: Efficient gossip and robust distributed computation. Theor. Comput. Sci. 347(1–2), 130–166 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Georgiou, C., Shvartsman, A.A.: Cooperative Task-Oriented Computing: Algorithms and Complexity. Morgan & Claypool Publishers, San Rafael (2011)Google Scholar
  14. 14.
    Gondhalekar, V., Jain, R., Werth, J.: Scheduling on airdisks: efficient access to personalized information services via periodic wireless data broadcast. Technical report TR-96-25, Department of Computer Science, University of Texas, Austin, TX (1996)Google Scholar
  15. 15.
    Klonowski, M., Kowalski, D.R., Mirek, J.: Ordered and delayed adversaries and how to work against them on a shared channel. Distrib. Comput. (2018)Google Scholar
  16. 16.
    Kowalski, D.R., Shvartsman, A.A.: Performing work with asynchronous processors: message-delay-sensitive bounds. In: Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing, PODC 2003, pp. 265–274. ACM, New York (2003)Google Scholar
  17. 17.
    Kowalski, D.R., Wong, P.W., Zavou, E.: Fault tolerant scheduling of tasks of two sizes under resource augmentation. J. Sched. 20(6), 695–711 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Lucarelli, G., Srivastav, A., Trystram, D.: From preemptive to non-preemptive scheduling using rejections. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp. 510–519. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42634-1_41CrossRefGoogle Scholar
  19. 19.
    McNaughton, R.: Scheduling with deadlines and loss functions. Manag. Sci. 6(1), 1–12 (1959)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marek Klonowski
    • 1
  • Dariusz R. Kowalski
    • 2
    • 3
  • Jarosław Mirek
    • 4
    Email author
  • Prudence W. H. Wong
    • 4
  1. 1.Wrocław University of Science and TechnologyWrocławPoland
  2. 2.School of Computer and Cyber SciencesAugusta UniversityAugustaUSA
  3. 3.SWPS University of Social Sciences and HumanitiesWarsawPoland
  4. 4.University of LiverpoolLiverpoolUK

Personalised recommendations