Extension of Some Edge Graph Problems: Standard and Parameterized Complexity

  • Katrin Casel
  • Henning Fernau
  • Mehdi Khosravian Ghadikolaei
  • Jérôme Monnot
  • Florian SikoraEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11651)


We consider extension variants of some edge optimization problems in graphs containing the classical Edge Cover, Matching, and Edge Dominating Set problems. Given a graph \(G=(V,E)\) and an edge set \(U \subseteq E\), it is asked whether there exists an inclusion-wise minimal (resp., maximal) feasible solution \(E'\) which satisfies a given property, for instance, being an edge dominating set (resp., a matching) and containing the forced edge set U (resp., avoiding any edges from the forbidden edge set \(E\setminus U\)). We present hardness results for these problems, for restricted instances such as bipartite or planar graphs. We counter-balance these negative results with parameterized complexity results. We also consider the price of extension, a natural optimization problem variant of extension problems, leading to some approximation results.


Extension problems Edge cover Matching Edge domination \({\mathsf {NP}}\)-completeness Parameterized complexity Approximation 


  1. 1.
    Bazgan, C., Brankovic, L., Casel, K., Fernau, H.: On the complexity landscape of the domination chain. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 61–72. Springer, Cham (2016). Scholar
  2. 2.
    Bazgan, C., et al.: The many facets of upper domination. Theor. Comput. Sci. 717, 2–25 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berger, A., Fukunaga, T., Nagamochi, H., Parekh, O.: Approximability of the capacitated b-edge dominating set problem. Theor. Comput. Sci. 385(1–3), 202–213 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berger, A., Parekh, O.: Linear time algorithms for generalized edge dominating set problems. Algorithmica 50(2), 244–254 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT. ECCC (049) (2003)Google Scholar
  6. 6.
    Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett. 19(1), 37–40 (1984)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Biró, M., Hujter, M., Tuza, Z.: Precoloring extension. I. Interval graphs. Disc. Math. 100(1–3), 267–279 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bonamy, M., Defrain, O., Heinrich, M., Raymond, J.-F.: Enumerating minimal dominating sets in triangle-free graphs. In: Niedermeier, R., Paul, C. (eds.) STACS, Dagstuhl, Germany. Leibniz International Proceedings in Informatics (LIPIcs), vol. 126, pp. 16:1–16:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)Google Scholar
  9. 9.
    Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean functions. Optim. Meth. Softw. 10(2), 147–156 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cardinal, J., Levy, E.: Connected vertex covers in dense graphs. Theor. Comput. Sci. 411(26–28), 2581–2590 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Casel, K., Fernau, H., Khosravian Ghadikoei, M., Monnot, J., Sikora, F.: On the complexity of solution extension of optimization problems. CoRR, abs/1810.04553 (2018)Google Scholar
  12. 12.
    Casel, K., Fernau, H., Ghadikoalei, M.K., Monnot, J., Sikora, F.: Extension of vertex cover and independent set in some classes of graphs. In: Heggernes, P. (ed.) CIAC 2019. LNCS, vol. 11485, pp. 124–136. Springer, Cham (2019). Scholar
  13. 13.
    Colbourn, C.J.: The complexity of completing partial Latin squares. Disc. Appl. Math. 8(1), 25–30 (1984)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dudycz, S., Lewandowski, M., Marcinkowski, J.: Tight approximation ratio for minimum maximal matching. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 181–193. Springer, Cham (2019). Scholar
  15. 15.
    Escoffier, B., Monnot, J., Paschos, V.T., Xiao, M.: New results on polynomial inapproximabilityand fixed parameter approximability of edge dominating set. Theory Comput. Syst. 56(2), 330–346 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fernau, H.: edge dominating set: efficient enumeration-based exact algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 142–153. Springer, Heidelberg (2006). Scholar
  17. 17.
    Fernau, H., Hoffmann, S.: Extensions to minimal synchronizing words. J. Autom. Lang. Comb. 24 (2019)Google Scholar
  18. 18.
    Fernau, H., Manlove, D.F., Monnot, J.: Algorithmic study of upper edge dominating set (2019, manuscript)Google Scholar
  19. 19.
    Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: Johnson, D.S., et al. (eds.) STOC, pp. 448–456. ACM (1983)Google Scholar
  20. 20.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. (1979)Google Scholar
  21. 21.
    Golovach, P.A., Heggernes, P., Kratsch, D., Vilnger, Y.: An incremental polynomial time algorithm to enumerate all minimal edge dominating sets. Algorithmica 72(3), 836–859 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the neighbourhood helly of some graph classes and applications to the enumeration of minimal dominating sets. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 289–298. Springer, Heidelberg (2012). Scholar
  23. 23.
    Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math. 52, 233–252 (1994)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9, 558–565 (1980)MathSciNetCrossRefGoogle Scholar
  25. 25.
    McRae, A.A.: Generalizing NP-completeness proofs for bipartite and chordal graphs. Ph.D. thesis, Clemson University, Department of Computer Science, South Carolina (1994)Google Scholar
  26. 26.
    van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. Algorithmica 64(4), 535–563 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  28. 28.
    Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) STOC, pp. 453–461. ACM (2001)Google Scholar
  29. 29.
    Uno, T.: Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs. In: Leong, H.W., Imai, H., Jain, S. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 92–101. Springer, Heidelberg (1997). Scholar
  30. 30.
    Wang, J., Chen, B., Feng, Q., Chen, J.: An efficient fixed-parameter enumeration algorithm for weighted edge dominating set. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 237–250. Springer, Heidelberg (2009). Scholar
  31. 31.
    Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(1), 103–128 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katrin Casel
    • 1
    • 2
  • Henning Fernau
    • 2
  • Mehdi Khosravian Ghadikolaei
    • 3
  • Jérôme Monnot
    • 3
  • Florian Sikora
    • 3
    Email author
  1. 1.Hasso Plattner InstituteUniversity of PotsdamPotsdamGermany
  2. 2.Universität TrierTrierGermany
  3. 3.Université Paris-Dauphine, PSL University, CNRS, LAMSADEParisFrance

Personalised recommendations