Advertisement

An Efficient Algorithm for the Fast Delivery Problem

  • Iago A. Carvalho
  • Thomas ErlebachEmail author
  • Kleitos Papadopoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11651)

Abstract

We study a problem where k autonomous mobile agents are initially located on distinct nodes of a weighted graph (with n nodes and m edges). Each autonomous mobile agent has a predefined velocity and is only allowed to move along the edges of the graph. We are interested in delivering a package, initially positioned in a source node s, to a destination node y. The delivery is achieved by the collective effort of the autonomous mobile agents, which can carry and exchange the package among them. The objective is to compute a delivery schedule that minimizes the delivery time of the package. In this paper, we propose an \(\mathcal {O}(kn\log (kn)+km)\) time algorithm for this problem. This improves the previous state-of-the-art \(\mathcal {O}(k^2 m + k n^2 + \mathrm {APSP})\) time algorithm for this problem, where \(\mathrm {APSP}\) stands for the running-time of an algorithm for the All-Pairs Shortest Paths problem.

Keywords

Mobile agents Dijkstra’s algorithm Polynomial-time algorithm Time-dependent shortest paths 

Notes

Acknowledgments

Iago A. Carvalho was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

References

  1. 1.
    Bamburry, D.: Drones: designed for product delivery. Des. Manag. Rev. 26(1), 40–48 (2015)Google Scholar
  2. 2.
    Bärtschi, A., et al.: Collaborative delivery with energy-constrained mobile robots. Theor. Comput. Sci. (2017).  https://doi.org/10.1016/j.tcs.2017.04.018CrossRefzbMATHGoogle Scholar
  3. 3.
    Bärtschi, A., et al.: Energy-efficient delivery by heterogeneous mobile agents. In: 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). LIPIcs, vol. 66, p. 10, Schloss Dagstuhl, Leibniz-Zentrum für Informatik (2017).  https://doi.org/10.4230/LIPIcs.STACS.2017.10
  4. 4.
    Bärtschi, A., Graf, D., Mihalák, M.: Collective fast delivery by energy-efficient agents. In: Potapov, I., Spirakis, P., Worrell, J. (eds.) 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). LIPIcs, vol. 117, pp. 56:1–56:16, Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018).  https://doi.org/10.4230/LIPIcs.MFCS.2018.56
  5. 5.
    Bärtschi, A., Tschager, T.: Energy-efficient fast delivery by mobile agents. In: Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 82–95. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-55751-8_8CrossRefGoogle Scholar
  6. 6.
    Bentley, J.L., Ottmann, T.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. 28(9), 643–647 (1979).  https://doi.org/10.1109/TC.1979.1675432CrossRefzbMATHGoogle Scholar
  7. 7.
    de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Chalopin, J., Das, S., Mihal’ák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-45346-5_9CrossRefGoogle Scholar
  9. 9.
    Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43951-7_36CrossRefGoogle Scholar
  10. 10.
    Cooke, K., Halsey, E.: The shortest route through a network with time-dependent internodal transit times. J. Math. Anal. Appl. 14(3), 493–498 (1966).  https://doi.org/10.1016/0022-247X(66)90009-6MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Delling, D., Wagner, D.: Time-dependent route planning. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05465-5_8CrossRefGoogle Scholar
  12. 12.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987).  https://doi.org/10.1145/28869.28874MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gąsieniec, L., Kijima, S., Min, J.: Searching with increasing speeds. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 126–138. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03232-6_9CrossRefGoogle Scholar
  14. 14.
    Goodrich, M., Ramaiyer, K.: Geometric data structures. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 463–489. Elsevier Science (2000)Google Scholar
  15. 15.
    Hong, I., Kuby, M., Murray, A.: A deviation flow refueling location model for continuous space: a commercial drone delivery system for urban areas. In: Griffith, D.A., Chun, Y., Dean, D.J. (eds.) Advances in Geocomputation. AGIS, pp. 125–132. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-22786-3_12CrossRefGoogle Scholar
  16. 16.
    Murray, C.C., Chu, A.G.: The flying sidekick traveling salesman problem: optimization of drone-assisted parcel delivery. Transp. Res. Part C: Emerg. Technol. 54, 86–109 (2015).  https://doi.org/10.1016/j.trc.2015.03.005CrossRefGoogle Scholar
  17. 17.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of InformaticsUniversity of LeicesterLeicesterUK

Personalised recommendations