Skip to main content

Algebraic Theory of Promise Constraint Satisfaction Problems, First Steps

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11651))

Included in the following conference series:

Abstract

What makes a computational problem easy (e.g., in P, that is, solvable in polynomial time) or hard (e.g., NP-hard)? This fundamental question now has a satisfactory answer for a quite broad class of computational problems, so called fixed-template constraint satisfaction problems (CSPs) – it has turned out that their complexity is captured by a certain specific form of symmetry. This paper explains an extension of this theory to a much broader class of computational problems, the promise CSPs, which includes relaxed versions of CSPs such as the problem of finding a 137-coloring of a 3-colorable graph.

Libor Barto has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we should rather say a hypergraph whose hyperedges have size at most 3 because of conjuncts of the form \(3NAE_k(x,x,y)\) or \(3NAE_k(x,x,x)\). Let us ignore this minor technical imprecision.

  2. 2.

    Their conjecture is equivalent but was, of course, originally stated in a different language – the significance of minor conditions in CSPs was identified much later.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998). https://doi.org/10.1145/278298.278306

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998). https://doi.org/10.1145/273865.273901

    Article  MathSciNet  MATH  Google Scholar 

  3. Austrin, P., Guruswami, V., Håstad, J.: (2+\(\epsilon \))-sat is NP-hard. SIAM J. Comput. 46(5), 1554–1573 (2017). https://doi.org/10.1137/15M1006507

    Article  MathSciNet  MATH  Google Scholar 

  4. Barto, L.: Promises make finite (constraint satisfaction) problems infinitary. In: LICS (2019, to appear)

    Google Scholar 

  5. Barto, L., Bulín, J., Krokhin, A.A., Opršal, J.: Algebraic approach to promise constraint satisfaction (2019, in preparation)

    Google Scholar 

  6. Barto, L., Krokhin, A., Willard, R.: Polymorphisms, and how to use them. In: Krokhin, A., Živný, S. (eds.) The Constraint Satisfaction Problem: Complexity and Approximability, Dagstuhl Follow-Ups, vol. 7, pp. 1–44. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). https://doi.org/10.4230/DFU.Vol7.15301.1

  7. Barto, L., Opršal, J., Pinsker, M.: The wonderland of reflections. Isr. J. Math. 223(1), 363–398 (2018). https://doi.org/10.1007/s11856-017-1621-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Birkhoff, G.: On the structure of abstract algebras. Math. Proc. Camb. Philos. Soc. 31(4), 433–454 (1935). https://doi.org/10.1017/S0305004100013463

    Article  MATH  Google Scholar 

  9. Bodirsky, M.: Constraint satisfaction problems with infinite templates. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 196–228. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92800-3_8

    Chapter  MATH  Google Scholar 

  10. Bodnarchuk, V.G., Kaluzhnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for post algebras. I. Cybernetics 5(3), 243–252 (1969). https://doi.org/10.1007/BF01070906

    Article  MathSciNet  Google Scholar 

  11. Bodnarchuk, V.G., Kaluzhnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for Post algebras. II. Cybernetics 5(5), 531–539 (1969)

    Article  Google Scholar 

  12. Brakensiek, J., Guruswami, V.: New hardness results for graph and hypergraph colorings. In: Raz, R. (ed.) 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 50, pp. 14:1–14:27. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.CCC.2016.14

  13. Brakensiek, J., Guruswami, V.: Promise constraint satisfaction: Algebraic structure and a symmetric boolean dichotomy. ECCC Report No. 183 (2016)

    Google Scholar 

  14. Brakensiek, J., Guruswami, V.: Promise constraint satisfaction: Structure theory and a symmetric boolean dichotomy. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pp. 1782–1801. Society for Industrial and Applied Mathematics, Philadelphia (2018). http://dl.acm.org/citation.cfm?id=3174304.3175422

  15. Brakensiek, J., Guruswami, V.: An algorithmic blend of LPs and ring equations for promise CSPs. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, 6–9 January 2019, pp. 436–455 (2019). https://doi.org/10.1137/1.9781611975482.28

    Chapter  Google Scholar 

  16. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005). https://doi.org/10.1137/S0097539700376676

    Article  MathSciNet  MATH  Google Scholar 

  17. Bulatov, A.A.: A dichotomy theorem for nonuniform CSPs. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 319–330, October 2017. https://doi.org/10.1109/FOCS.2017.37

  18. Bulín, J., Krokhin, A., Opršal, J.: Algebraic approach to promise constraint satisfaction. In: Proceedings of the 51st Annual ACM SIGACT Symposium on the Theory of Computing (STOC 2019). ACM, New York (2019). https://doi.org/10.1145/3313276.3316300

  19. Dinur, I., Regev, O., Smyth, C.: The hardness of 3-uniform hypergraph coloring. Combinatorica 25(5), 519–535 (2005). https://doi.org/10.1007/s00493-005-0032-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: a study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998). https://doi.org/10.1137/S0097539794266766

    Article  MathSciNet  MATH  Google Scholar 

  21. Geiger, D.: Closed systems of functions and predicates. Pacific J. Math. 27, 95–100 (1968). https://doi.org/10.2140/pjm.1968.27.95

    Article  MathSciNet  MATH  Google Scholar 

  22. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001). https://doi.org/10.1145/502090.502098

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, S.: Improved hardness of approximating chromatic number. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM -2013. LNCS, vol. 8096, pp. 233–243. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40328-6_17

    Chapter  Google Scholar 

  24. Jeavons, P.: On the algebraic structure of combinatorial problems. Theor. Comput. Sci. 200(1–2), 185–204 (1998). https://doi.org/10.1016/S0304-3975(97)00230-2

    Article  MathSciNet  MATH  Google Scholar 

  25. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. ACM 44(4), 527–548 (1997). https://doi.org/10.1145/263867.263489

    Article  MathSciNet  MATH  Google Scholar 

  26. Krokhin, A., Živný, S. (eds.): The Constraint Satisfaction Problem: Complexity and Approximability, Dagstuhl Follow-Ups, vol. 7. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  27. Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A 25(3), 319–324 (1978). https://doi.org/10.1016/0097-3165(78)90022-5

    Article  MathSciNet  MATH  Google Scholar 

  28. Pippenger, N.: Galois theory for minors of finite functions. Discrete Math. 254(1), 405–419 (2002). https://doi.org/10.1016/S0012-365X(01)00297-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pp. 216–226. ACM, New York (1978). https://doi.org/10.1145/800133.804350

  30. Zhuk, D.: A proof of CSP dichotomy conjecture. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 331–342, October 2017. https://doi.org/10.1109/FOCS.2017.38

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Barto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barto, L. (2019). Algebraic Theory of Promise Constraint Satisfaction Problems, First Steps. In: Gąsieniec, L., Jansson, J., Levcopoulos, C. (eds) Fundamentals of Computation Theory. FCT 2019. Lecture Notes in Computer Science(), vol 11651. Springer, Cham. https://doi.org/10.1007/978-3-030-25027-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25027-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25026-3

  • Online ISBN: 978-3-030-25027-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics