Advertisement

Population Genetics of Human Space Settlement

  • Cameron M. SmithEmail author
Chapter
Part of the Space and Society book series (SPSO)

Abstract

Just as we must see to the health of individual people when we venture permanently beyond Earth, we will have to see to the health of our populations—the gene pool, which in practical terms is composed of groups of families. In popular culture this often immediately brings up the spectre of ‘genetic screening’ for space settlement, as depicted in the 1990 film ‘Gatacca’. In that film a draconian genetic-screening programme sought to establish a ‘super race’ of spacefarers. While the film had useful messages about genetic screening generally, it was entirely wrong about what will make for successful populations of people beyond Earth; it is genetic diversity, not uniformity, that is most likely to make for success beyond Earth, as new selective environments and pressures are encountered, and in fact themselves change through time in ways that we will only learn when we experience them. How to maintain genetic health, diversity, then, in the project of space settlement? This chapter tackles this fascinating question by evaluating the well-known drivers of population genetic change, namely mutation, migration, selection and drift. We will also explore important questions of humanity’s Minimum Viable Population, a figure often of interest to space planners but one I suggest is a useful guide only for early populations which I recommend to grow rapidly as insurance against catastrophe, to which small populations are most vulnerable. I also present several formulae useful to estimation of populations of space settlers in various circumstances and mention other current models. Finally, I discuss genetic screening and testing in relation to the issue of the genetic constitution of space-settling populations, and make recommendations regarding extraterrestrial human population sizes based on a broad review of human and other population phenomena and the lessons of several billion years of Earth life evolution; these supply important lessons in the fossil and genetic records. This chapter updates and expands upon work I first published in Acta Astronautica, in 2014, regarding viable populations for interstellar voyaging. While that paper was interesting and useful, the fuller expression of its theory and application are found in this chapter.

References

  1. Adams, M. S., & Neel, J. V. (1967). Children of incest. Pediatrics, 40(1), 55–62.Google Scholar
  2. Andrews, L. B., Fullarton, J. E., & Holtzman, N. A. (1994). Assessing genetic risks: Implications for health and social policy. Social, Legal, and Ethical Implications of Genetic Testing, (8), 247–289. https://www.ncbi.nlm.nih.gov/books/NBK236044/. Washington (DC): National Academies Press (US).
  3. Avise, J. C., Ball, R. M., & Arnold, J. (1998). Current versus historical population sizes in vertebrate species with high gene flow: A comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Molecular Biology and Evolution, 5, 331–344.Google Scholar
  4. Ayala, F. (1995). The myth of eve: Molecular biology and human origins. Science, 270, 1930–1936.ADSCrossRefGoogle Scholar
  5. Bailey, W. J. K., Hayasaka, K., Skinner, C. G., Kehoe, S., Cieu, L. C., Slightom, J., & Goodman, M. (1992). Reexamination of the African hominoid trichotomy with additional sequences from the primate beta-globulin gene cluster. Molecular Phylogenetics and Evolution, 1, 97–135.Google Scholar
  6. Bainbridge, W. S. (2018). Computer simulations of space societies. New York: Springer.CrossRefGoogle Scholar
  7. Barigozzi, G., et al. (1959). Schema della distribuzione geografica dei gruppi sanguigni in Italia. In L. P. Hollander (Ed.), 7th Congress of the Proceedings International Society of Blood Transfusion, Rome (pp. 266–269). Basel: Karger.Google Scholar
  8. Barton, N. H., & Charlesworth, B. (1994). Genetic revolutions, founder effects and speciation. Annual Review of Ecology, Evolution, and Systematics, 15, 133–164.CrossRefGoogle Scholar
  9. Beichman, C., et al. (2014). Observations of transiting exoplanets with the James Webb space telescope. Publications of the Astronomical Society of the Pacific, 126, 1134–1173.ADSCrossRefGoogle Scholar
  10. Berdyugina, S. V., et al. (2018). ExoLife finder (ELF): A hybrid optical telescope for imaging exo-earths. Astrobiology Science Strategy for the Search for Life in the Universe National Academies of Sciences, Engineering, and Medicine (White Paper). Online at https://www.planets.life/wp-content/uploads/2018/03/ExoLife_Finder_2018_white_paper.pdf.
  11. Boivard, T., Lineweaver, C. H., & Jacobsen, S. K. (2015). Using the inclinations of Kepler systems to prioritize new Titius–Bode-based exoplanet predictions. Monthly Notices of the Royal Astronomical Society, 448, 3608–3627.ADSCrossRefGoogle Scholar
  12. Boughman, J. W. (2001). Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature, 411, 944–948.ADSCrossRefGoogle Scholar
  13. Boyce, A. J., Kucheman, C. F., & Harrison, G. A. (1967). Neighbourhood knowledge and the distribution of marriage distances. Annals of Human Genetics, 30, 335–338.Google Scholar
  14. Caballero, A. (1994). Development of the prediction of effective population size. Heredity, 73, 657–679.CrossRefGoogle Scholar
  15. Campbell, K. S. W., & Day, M. F. (Eds.). (1987). Rates of evolution. Allen and Unwyn: London.Google Scholar
  16. Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10, 195–205.CrossRefGoogle Scholar
  17. Chen, F. G., & Li, W.-H. (2001). Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. American Journal of Human Genetics, 68(2), 444–456.CrossRefGoogle Scholar
  18. Cummings, M. R. (2003). Human heredity (6th ed.). Pacific Grove, California: Thomson.Google Scholar
  19. Davidsson, P. (2002). Agent based social simulation: A computer science view. Journal of Artificial Societies and Social Simulation, 5(1). See http://jasss.soc.surrey.ac.uk/5/1/7.html.
  20. de Queiroz, K. (2005). Ernst Mayr and the modern concept of species. In J. Hey, W. M. Fitch, & F. Ayala (Eds.), Systematics and the origin of species: On Ernst Mayr’s 100th Anniversary (pp. 243–266). Washington, DC: National Academies Press.Google Scholar
  21. Dorea, J. G., & Donangelo, C. M. (2006). Early (in uterus and infant) exposure to mercury and lead. Clinical Nutrition, 25, 369–376.CrossRefGoogle Scholar
  22. Dorit, R. L., Akashi, H., & Gilbert, W. (1995). Absence of polymorphism at the AFY locus on the human Y chromosome. Science, 268, 1183–1185.ADSCrossRefGoogle Scholar
  23. Douglas, M. (1966). Population control in primitive groups. British Journal of Sociology, 17, 263–273.CrossRefGoogle Scholar
  24. Dunbar, R. I. M. (1993). Coevolution of neocortical size, group size and language in humans. Behavioral and Brain Sciences, 16(4), 681–735.CrossRefGoogle Scholar
  25. Duret, L. (2009). Mutation patterns in the human genome: More variable than expected. PLOS Biology, 7(2), 217–219.CrossRefGoogle Scholar
  26. Durham, W. H. (1993). Coevolution: Genes, culture and human diversity (1st ed.). Stanford: Stanford University Press.Google Scholar
  27. Eckhardt, R. B. (2000). Human palaeobiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Endler, J. (1986). Natural selection in the wild. Princeton, New Jersey: Princeton University Press.Google Scholar
  29. Fenner, J. N. (2005). Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. American Journal of Physical Anthropology, 128(2), 415–423.CrossRefGoogle Scholar
  30. Finney, B., & Jones, E. M. (1985). Interstellar migration and the human experience. Berkeley: University of California Press.Google Scholar
  31. Fix, A. G. (1999). Migration and colonization in human microevolution. Cambridge: Cambridge University Press.Google Scholar
  32. Flather, F. H., Hayward, G. D., Beissinger, S. R., & Stephens, P. A. (2011). Minimum viable populations: Is there a ‘Magic Number’ for conservation practicioners? Trends in Ecology and Evolution, 26(6), 307–316.CrossRefGoogle Scholar
  33. Frankham, R. (1995). Effective population size/Adult population size ratios in wildlife: A review. Genetical Research, 66, 95–107.CrossRefGoogle Scholar
  34. Franklin, J. R. (1980). Evolutionary change in small populations. In M. E. Soule & B. A. Wilcox (Eds.), Conservation biology: An evolutionary-ecological perspective (pp. 135–150). Sinauer: Massachussetts.Google Scholar
  35. Franklin, J. R., & Frankham, R. (1998). How large must populations be to retain evolutionary potential? Animal Conservation, 1, 69–70.CrossRefGoogle Scholar
  36. Friedberg, E. C. (2006). Mutation as a phenotype. In L. H. Caproale (Ed.), The implicit genome (pp. 39–56). Oxford: Oxford University Press.Google Scholar
  37. Horneck, G., Mileikowski, C., Melosh, H. J., Wilson, J. W. Cucinotta, F. A., & Gladman, B. (2002). Viable transfer of microorganisms in the solar system and beyond. In G. Hornbeck & C. Baumstarck-Khan (Eds.), Astrobiology: The quest for the conditions of life (pp. 57–76). New York: Springer.Google Scholar
  38. Galvani, A. P., & Slatkin, M. (2003). Evaluating plague and smallpox as historical selective pressures for the CCR35-Delta32 HIV-Resistance allele. Proceedings of the National Academy of Sciences, 100(25), 15276–15279.ADSCrossRefGoogle Scholar
  39. Gamble, C. (2003). Timewalkers. Cambridge: Harvard University Press.Google Scholar
  40. Gamble, C. (1999). The palaeolithic societies of Europe. Cambridge: Cambridge University Press.Google Scholar
  41. Gillespie, J. H. (2001). Is the population size of a species relevant to its evolution? Evolution, 55, 2161–2169.CrossRefGoogle Scholar
  42. GINA. (2019). See http://www.ginahelp.org/.
  43. Gould, S. J., & Eldredge, N. (Eds.). (1982). Genetics and the origin of species by Theodosius Dobzhansky. Columbia classics in evolution series. New York: Columbia University Press.Google Scholar
  44. Gunson, N. (1997). Great families of Polynesia: Inter-island links and marriage patterns. Journal of Pacific History, 32(2), 139–179.CrossRefGoogle Scholar
  45. Hadid, Y., et al. (2014). Sympatric incipient speciation of spiny mice Acomys at “Evolution Canyon”, Israel. Proceedings of the National Academies of Science of the United States of America, 111(3), 1043–1048.ADSCrossRefGoogle Scholar
  46. Hammer, M. F. (1995). A recent common ancestry for human Y chromosome. Nature, 378, 376–378.ADSCrossRefGoogle Scholar
  47. Harcourt, A. H. (2002). Emprical estimates of minimum viable population sizes for primates: Tens to tens of thousands? Animal Conservation, 5, 237–244.CrossRefGoogle Scholar
  48. Harding, R. M., Fullerton, S. M., Griffiths, R. C., Bond, J., Cox, M. J., Schneider, J. A., et al. (1997). Archaic African and Asian lineages in the genetic ancestry of modern humans. The American Society of Human Genetics, 60, 772–789.Google Scholar
  49. Harmon, L. J., & Braude, S. (2013). Conservation of small populations: Effective population sizes, inbreeding, and the 50/500 Rule. In S. Braude & B. S. Low (Eds.), An introduction to methods and models in ecology, evolution, and conservation biology (pp. 125–138). Princeton: Princeton University Press.Google Scholar
  50. Harpending, S., Batzer, M. A., Gurven, M., Jorde, L. B., Rogers, A. R., & Sherry, S. T. (1998). Genetic traces of ancient demography. Proceedings of the National Academy of Sciences of the United States of America, 1995, 1961–1967.ADSCrossRefGoogle Scholar
  51. Harrison, G. A., & Boyce, A. J. (1972). The framework of population studies. In G. A. Harrison & A. J. Boyce (Eds.), The structure of human populations (pp. 1–16). Oxford: Clarendon Press.Google Scholar
  52. Hawks, J., Hunley, K., Lee, S.-H., & Wolpoff, M. (2000). Population bottlenecks and pleistocene human evolution. Molecular Biology and Evolution, 17, 2–22.Google Scholar
  53. Hein, A., Pak, M., Putz, D., Buhler, C., & Reiss, P. (2012). World ships—Architectures and feasibility revisited. Journal British Interplanetary Society, 65, 119–133.ADSGoogle Scholar
  54. Henderson, J. B. (1987). The importance of limited exposure to ultraviolet radiation and dietary factors in the etiology of Asian rickets: A risk-factor model. QJM: An International Journal of Medicine, 63, 413–442.Google Scholar
  55. Hey, J. (2005). On the number of new world founders: A population genetic portrait of the peopling of the Americas. PLoS Biology, 3(6), 0965–0975.CrossRefGoogle Scholar
  56. Huang, H., Fu, Y. X., Chang, B. H., Gu, X., Jorde, L. B., & Li, W. H. (1998). Sequence variation in ZFX introns in human populations. Molecular Biology and Evolution, 15(2), 138–142.CrossRefGoogle Scholar
  57. Hull, D. L., Langman, R., & Glenn, S. (2001). A general account of selection: Biology, immunology and behavior. Behavioral and Brain Sciences, 24, 511–528.CrossRefGoogle Scholar
  58. Jancar, J., & Johnston, S. J. (2008). Incest and mental handicap. Journal of Intellectual Disability Research, 34(6), 483–490.Google Scholar
  59. Jorde, J. B., Carey, J. C., Bamshad, M. J., & White, R. L. (1999). Medical Genetics. St. Louis: Mosby.Google Scholar
  60. Jorde, L. B., Watkins, W. S., & Bamshad, M. J. (2001). Population genomics: A bridge from evolutionary history to genetic medicine. Human Molecular Genetics, 10(20), 2199–2207.CrossRefGoogle Scholar
  61. Kaesmann, H., Weibe, V., & Paabo, S. (1999). Extensive nuclear DNA sequence diversity among Chimpanzees. Science, 286, 1159–1162.CrossRefGoogle Scholar
  62. Kelly, R. J. (2007). The foraging spectrum: Diversity in hunter-gatherer lifeways. New York: Eliot Warner Reprints.Google Scholar
  63. Kimura, M., & Ohta, T. (1969). The average number of generations until fixation of a mutant gene in a finite population. Genetics, 61, 763–771.Google Scholar
  64. Kinnaird, M. F., & O’Brien, T. G. (1991). Viable populations for an endangered forest primate, the tana river crested Mangabey (Cercocebus galeritus galeritus). Conservation Biology, 5(2), 203–213.Google Scholar
  65. Kondo, Y., Bruhweiler, F., Moore, J., & Sheffield, C. (Eds.), (1991). Interstellar travel and multi-generational space ships. Wheaton, Illinois: Apogee Books.Google Scholar
  66. Lande, R. (1988). Genetics and demography in biological conservation. Science, 241, 1455–1460.ADSCrossRefGoogle Scholar
  67. Lande, R. (1995). Mutation and conservation. Conservation Biology, 9(4), 782–791.CrossRefGoogle Scholar
  68. Leffler, E. M., Bullaughey, K., Matute, D., Meyer, W. K., Segruel, L., Venkat, A., et al. (2012). Revisting and old riddle: What determines genetic diversity levels within species? PLoS Biology, 10(9), 1–9.CrossRefGoogle Scholar
  69. Lewis, D. (1972 [1994]). We, the navigators. Honolulu: University of Hawaii Press.Google Scholar
  70. Long, K. F. (2016). Project Icarus: Development of fusion based space propulsion for interstellar missions. Journal of the British Interplanetary Society, 69, 289–294.ADSGoogle Scholar
  71. Lynch, M. (2010). Rate, molecular spectrum, and consequences of human mutation. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 961–968.ADSCrossRefGoogle Scholar
  72. Lynch, M., & Lande, R. (1998). The critical effective size for a genetically secure population. Animal Conservation, 1(1), 70–72.CrossRefGoogle Scholar
  73. Marin, F. (2017). Heritage: A Monte Carlo code to evaluate the viability of interstellar travels using a multigenerational crew. Journal of the British Interplanetary Society, 70, 184–195.ADSGoogle Scholar
  74. Marin, F., & Beluffi, C. (2018). Computing the minimal crew for a multi-generational space journey towards proxima centarui b. Journal of the British Interplanetary Society, 71, 431–438.Google Scholar
  75. Marin, F., Beluffi, C., Taylor, R., & Grau, L. (2018). Numerical constraints on the size of generation ships: from total energy expenditure on board, annual food production and space. Journal of the British Interplanetary Society, 71, 382–393.ADSGoogle Scholar
  76. Masel, J. (2012). Rethinking Hardy-Weinberg and genetic drift in undergraduate biology. BioEssays, 34(2012), 701–710.CrossRefGoogle Scholar
  77. Matsamura, S., & Forster, P. (2008). Generation time and effective population size in polar eskimos. Proceedings of the Royal Society B: Biological Sciences, 275, 1501–1508.CrossRefGoogle Scholar
  78. Mayr, E. (1996). What is a species and what is not? Philosophy of Science, 63, 262–277.CrossRefGoogle Scholar
  79. Mills, L. S., & Smouse, P. E. (1994). Demographic consequences of inbreeding in remnant populations. American Naturalist, 144(3), 412–431.CrossRefGoogle Scholar
  80. Moore, J. H. (1991a). Kin-based crews for interstellar multi-generational space travel. In Y. Kondo, F. Bruhweiler, J. Moore & C. Sheffield (Eds.), Interstellar travel and multi-generational space ships (pp. 81–88). Wheaton, Illinois: Apogee Books.Google Scholar
  81. Moore, J. H. (1991b). Kin-based crews for interstellar multi-generational space travel. In Y. Kondo, F. Bruhweiler, J. Moore, & C. Sheffield (Eds.), Interstellar travel and multi-generational space ships (pp. 81–88). Wheaton, Illinois: Apogee Books.Google Scholar
  82. Moore, J. H. (2003). Evaluating five models of human colonization. American Anthropologist, 103(2), 395–408.CrossRefGoogle Scholar
  83. Nei, M., & Grauer, D. (1984). Extent of protein polymorphism and the neutral mutation theory. Evolutionary Biology, 27, 73–118.Google Scholar
  84. Newmark, W. D. (1987). A land-bridge island perspective on mammalian extinctions in Western North American Parks. Nature, 325, 430–432.ADSCrossRefGoogle Scholar
  85. O’Rourke, D. (1991). Genetic considerations in multi-generational space travel. In Y. Kondo, F. Bruhweiler, J. Moore & C. Sheffield (Eds.), Interstellar travel and multi-generational space ships (pp. 89–99). Wheaton, Illinois: Apogee Books.Google Scholar
  86. Patrick, P. L., Tam, L., & Loebel, D. A. F. (2007). Gene function in mouse embryogenesis: Get set for gastrulation. Nature Review Genetics, 8, L368–L381.Google Scholar
  87. Przeworski, M., & Wall, J. D. (2001). Why is there so little intragenic linkage disequilibrium in humans? Genetical Research, 77, 143–151.CrossRefGoogle Scholar
  88. Rai, U. K. (2003). Minimum sizes for viable population and conservation biology. Our Nature, 1, 3–9.CrossRefGoogle Scholar
  89. Reed, D. H., & Bryant, E. H. (2000). Experimental tests of minimum viable population size. Animal Conservation, 3(2000), 7–14.CrossRefGoogle Scholar
  90. Reed, D. H., O’Grady, J. J., Brook, B. W., Ballou, J. D., & Frankham, R. (2003). Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biological Conservation, 113(1), 23–34.CrossRefGoogle Scholar
  91. Relethford, J. H. (2001). Genetics and the search for modern human origins. New York: Wiley-Liss.Google Scholar
  92. Rodler, F. (2018). Exoplanet research in the era of the extremely large telescope. In H. J. Deeg & J. A. Belmonte (Eds.), Handbook of exoplanets (pp. 1105–1120). New York: Springer.CrossRefGoogle Scholar
  93. Ryman, N., & Lairke, L. (1991). Effects of supportive breeding on the genetically effective population size. Conservation Biology, 5(4), 325–329.CrossRefGoogle Scholar
  94. Schultz, S. T., & Lynch, M. (1997). Mutation and extinction: The role of variable mutational effects, synergistic epistasis beneficial mutations, and degree of outcrossing. Evolution, 51(1997), 1363–1371.CrossRefGoogle Scholar
  95. Shaffer, M. L. (1991). Minimum population sizes for species conservation. BioScience, 31, 131–134.CrossRefGoogle Scholar
  96. Sherry, S. T., Rogers, A. R., Harpending, H., Soodyall, H., Jenkins, T., & Stoneking, M. (1994). Alu evolution in human populations: Using the coalescent to estimate effective population size. Genetics, 147(1994), 1977–1982.Google Scholar
  97. Smith, C. M. (2013). Comment on ‘An Evolutionary framework for cultural change: Selectionism versus communal exchange. Physical Review Letters, 10, 156–167.ADSCrossRefGoogle Scholar
  98. Smith, C. M. (2014). Estimation of a genetically viable population for multigenerational interstellar voyaging: Review and data for project Hyperion. Acta Astronautica, 97, 16–29.ADSCrossRefGoogle Scholar
  99. Smith, C. M., & Ruppell, J. (2011). What anthropologists should know about the new evolutionary synthesis. Structure and Dynamics, 5(2), 1–13.Google Scholar
  100. Soule, M. E. (1987). Viable populations for conservation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  101. Strickberger, M. W. (1985). Genetics. New York: Prentice Hall.Google Scholar
  102. Summerford, S. (2012). Colonized interstellar vessel: Conceptual master planning. Internally-distributed paper available at http://www.icarusinterstellar.org/colonized-interstellar-vessel-conceptual-master-planning.
  103. Takahata, N. (1993). Allelic geneology and human evolution. Molecular Biology and Evolution, 10, 2–22.Google Scholar
  104. Takahata, N., & Satta, Y. (1998). Footprints of intragenic recombination at HAL locus. Immunogenetics, 47, 430–441.CrossRefGoogle Scholar
  105. Tenesa, A., Navaro, P., Hayes, B. J., Duffy, D. L., Clarke, G. M., Goddard, M. E., & Cisscher, P. M. (2007). Recent human effective population size estimated from linkage disequilibrium. Genome Research, 17, 520–526.Google Scholar
  106. Thomas, C. D. (1990). What do real population dynamics tell us about minimum viable population sizes? Conservation Biology, 4(3), 324–327.CrossRefGoogle Scholar
  107. Traill, L. W., Bradshaw, C. J. A., & Brook, B. W. (2007). Minimum viable population size: A meta-analysis of 30 years of published estimates. Biological Conservation, 139(2007), 159–166.CrossRefGoogle Scholar
  108. Udeya, J. C., et al. (2011). The million-year wait for macroevolutionary bursts. Proceedings of the National Academies of Science of the United States of America, 108(38), 15909–15913.ADSGoogle Scholar
  109. Voight, B. F., Adams, A. M., Frisse, L. A., Qian, Y., Hudson, R. R., & Di Rienzo, A. (2005). Interrogating multiple aspects of variation in a full resequencing data set to infer human population size changes. Proceedings of the National Academy of Sciences, 102(51), 18508–18513.ADSCrossRefGoogle Scholar
  110. Wang, D. G., Fan, J.-B., Siao, C.-J., Young, P., Sapolsky, R., Ghandour, G., et al. (1998). Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 280(5366), 1077–1082.ADSCrossRefGoogle Scholar
  111. Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7, 256–276.MathSciNetzbMATHCrossRefGoogle Scholar
  112. Weinberg, J. R., Starczak, V. R., & Jorg, D. (1992). Evidence for rapid speciation following a founder event in the laboratory. Evolution, 46(4), 1214–1220.CrossRefGoogle Scholar
  113. Whitlock, M. C. (2000). Fixation of new alleles and the extinction of small populations: Drift load. Beneficial Alleles, and Sexual Selection, Evolution, 54(2000), 1855–1861.Google Scholar
  114. Wijsman, E. M., & Cavalti-Sforza, L. L. (1984). Migration and genetic population structure with special reference to human. Annual Review of Ecology and Systematics, 15, 279–301.CrossRefGoogle Scholar
  115. Wobst, H. M. (1973). Boundary conditions for palaeolithic social systems: A simulation approach. American Antiquity, 39, 303–309.Google Scholar
  116. Wood, T. E., & Rieseberg, L. H. (2002). Speciation: Introduction, encyclopedia of the life sciences (Vol. 17, p. 2002). London: Nature Publishing Group.Google Scholar
  117. Wood, J. W. (1987). The genetic demography of the Gainj of Papua New Guinea: Determinants of effective population size. American Naturalist, 129(2), 165–187.CrossRefGoogle Scholar
  118. Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159.Google Scholar
  119. Younger, S. M. (2008). Conditions and mechanisms for peace in precontact Polynesia. Current Anthropology, 49(5), 927–934.CrossRefGoogle Scholar
  120. Yu, N., Jensen-Seaman, M. I., Chemnick, L., Ryder, O., & Li, W.-H. (2004). Nucleotide diversity in gorillas. Genetics, 166, 1375–1383.CrossRefGoogle Scholar
  121. Zhao, J., Li, W. J., & Xiong, M. M. (2001). Population-based linkage disequilibrium mapping of QTL: An application to simulated data in an isolated population. Genetic Epidemiology, 21(Suppl 1), S655–S659.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of AnthropologyPortland State UniversityPortlandUSA

Personalised recommendations