Principles of Space Anthropology pp 39-91 | Cite as
Individual Hominin Biology Beyond Earth
- 302 Downloads
Abstract
This chapter covers the biology of the individual human (or, more broadly, hominin) in environments beyond Earth; I consider the essential properties of such environments, such as gas composition and pressure, and gravity field, but I must emphasize that decades of biology research in Low Earth Orbit (LEO) have not furnished humanity with significant information regarding the properties of environments beyond Earth we are most likely to settle for some centuries. Mars or lunar settlements will not be at 0 g, as in LEO (where a great deal of space biology research has been done), but at 0.38 g (Mars) or 0.16 g (Moon), and molecular, cellular and larger-scale physiological processes will certainly differ in such environments. What in fact have nearly three decades of continuous biology research in LEO taught us? Something about what we might encounter if we choose to fly to Mars without rotation for artificial gravitation for about 100 days–but, to be blunt, that is about it. As regards the long-term human settlement of space it is arguable that not much learned from microgravity research is directly applicable. But we must begin somewhere—and I will note that in 2016, NASA began to fund artificial gravity research—and in this chapter I review the issues of the individual human beyond Earth, specifically tracking effects on development through the course of life.
References
- Aimar, C., Bautz, A., Durand, D., & Membre, H. (2000). Microgravity and hypergravity effects on fertilization of the salamander. Pleurodeles waltl (Urodele amphibian). Biology of Reproduction, 63, 551–558.Google Scholar
- American Academy of Pediatrics. (1993). Caring for your baby and young child: Birth to age 5. Online at https://eric.ed.gov/?id=ED363446.
- Andreazolli, M., Angeloni, D., Broccoli, V., & Demontis, F. G. (2017). Microgravity, stem cells and embryonic development: Challenges and opportunities for 3D tissue generation. Frontiers in Astronomy and Space Sciences, 4(2), 1–7. https://doi.org/10.3389/fspas.2017.00002.ADSCrossRefGoogle Scholar
- Baarends, W. M., Van der Laan, R., & Grootegoed, J. A. (2001). DNA repair mechanisms and gametogenesis. Reproduction, 121(1), 31–39.CrossRefGoogle Scholar
- Barham, G., & Clarke, N. M. P. (2008). Genetic regulation of embryological limb development with relation to congenital limb deformity in humans. Journal of Children’s Opthopaedics, 2(1), 1–9. https://doi.org/10.1007/s11832-008-0076-2.CrossRefGoogle Scholar
- Barthel, J., & Klijn, N. S. (2017). Adaptive, readily-morphing, optimized radiation shielding for transit habitats: Flyby Mars mission. Journal of Spacecraft and Rockets, 54(6), 1196–1201. https://doi.org/10.2514/1.A33935.ADSCrossRefGoogle Scholar
- Bateson, P., et al. (2014). Developmental plasticity and human health. Nature, 430, 419–421. https://doi.org/10.1038/nature02725.ADSCrossRefGoogle Scholar
- Black, S., Larkin, K., Jacqmotte, N., Wassersug, R., Pronych, S., & Souza, K. (1996). Regulagive development of Xenopus laevis in microgravity. Advances in Space Research, 17(6–7), 209–217.ADSCrossRefGoogle Scholar
- Bogin, B., & Smith, B. H. (1996). Evolution of the human life cycle. American Journal of Human Biology, 8, 703–716.CrossRefGoogle Scholar
- Chappell, J. C., & Bautch, V. L. (2010). Vascular Development—Genetic Mechanisms and Links to Vascular Disease. Current Topics in Developmental Biology, 90, 43–72. https://doi.org/10.1016/S0070-2153(10)90002-1.CrossRefGoogle Scholar
- Clement, G. (2006). Introduction to space biology. In G. Clement, & K. Slenzka (Eds.). Fundamentals of space biology: Research on cells, animals and plants in space (pp. 1–50). El Segundo, California: Microcosm Press; New York: Springer.Google Scholar
- Clement, G. (2017). International roadmap for artificial gravity research. Microgravity, 3(29). https://doi.org/10.1038/s41526-017-0034-8.
- Cogoli, A. (1993). The effect of space flight on human cellular immunity. Environmental Medicine, 37(2), 107–116.Google Scholar
- Cortese, F., et al. (2018). Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget, 9(18), 14692–14722.CrossRefGoogle Scholar
- Crawford-Young, S. J. (2006). Effects of microgravity on cell cytoskeleton and embryogenesis. International Journal of Developmental Biology, 50(2–3), 183–191.CrossRefGoogle Scholar
- Danilchik, M. V., & Savage, R. M. (1994). Cytoskeletal organization in advancing cleave furrows of Xenopus laevis. Molecular Biology of the Cell, 5, 101.Google Scholar
- Dayanandan, P. (2011). Gravitational biology and space life sciences: Current status and implications for the indian space programme. Journal of Biosciences, 36, 911–919.CrossRefGoogle Scholar
- Denisova, L. A. (1986). Effect of weightlessness on the skeletal development of the rat fetus. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina, 20, 60–63.Google Scholar
- Di Agostinio, S., Botti, F., DeCarlo, A., Sette, C., & Geremia, R. (2004, August). Meiotic progression of isolated mouse spermatocytes under simulated microgravity. Reproduction, 128, 25–32. https://doi.org/10.1530/rep.1.00184.CrossRefGoogle Scholar
- Dournon, C., Durand, D., Tankosic, C., Membre, H., Gualandris-Parisot, L., & Bautz, A. (2001). Effects of microgravity on the larval] development, metamorphosis and reproduction of the urodele amphibian Pleurodeles waltl. Development, Growth & Differentiation, 43, 315–326.CrossRefGoogle Scholar
- Duboule, D. (1995). Guide to the homeobox genes. Washington, D.C.: U.S. Department of Energy Office of Scientific and Technical Information.Google Scholar
- Dunlop, C. E., Telfer, E. E., & Anderson, R. A. (2014). Ovarian germline stem cells. Stem Cell Research and Therapy, 5, 98. https://doi.org/10.1186/scrt487.CrossRefGoogle Scholar
- Duret, L. (2009). Mutation patterns in the human genome: More variable than expected. PLoS Biology, 7(2), 217–219.CrossRefGoogle Scholar
- Emoto, K., Takao, Y., & Kuninaka, H. (2018). A preliminary study on radiation shielding using Martian magnetic anomalies. Biological Sciences in Space, 32, 1–5.CrossRefGoogle Scholar
- Englemann, U., Krassnig, F., & Schill, W. G. (1992). Sperm motility under conditions of weightlessness. Journal of Andrology, 13(5), 433–436.Google Scholar
- Ertem, G., Ertem, M. C., McKay, C. P., & Hazen, R. M. (2017). Shielding biomolecules from effects of radiation by Mars analog materials and soils. International Journal of Astrobiology, 16(3), 280–285.ADSCrossRefGoogle Scholar
- Finn, L. S., Maccarrone, M., & Blaber, E. (2017, April 25). Microgravity, stem cells and embryonic development: Challenges and opportunities for 3D tissue generation. Frontiers in Astronomy and Space Sciences. https://doi.org/10.3389/fspas.2017.00002.
- Friedberg, E. C. (2006). Mutation as a phenotype. In L. H. Caproale (Ed.), The implicit genome (pp. 39–56). Oxford: Oxford University Press.Google Scholar
- Friedberg, E. C., Walker, G. C., & Seide, W. (1995). DNA repair and mutagenesis. Washington, D.C.: ASM Press.Google Scholar
- Fusco, G., & Minelli, A. (2004). Phenotypic plasticity in development and evolution: Facts and concepts. Philosophical Transactions of the Royal Society B, 365, 547–556. https://doi.org/10.1098/rstb.2009.0267.CrossRefGoogle Scholar
- Future in Space Working Group. (2018). Teleconference audio archived online at the Future in Space Working Group archives at http://fiso.spiritastro.net/telecon/Ferl-Dumbacher_6-6-18/.
- Heyer, J. M. B. S., MacAuley, A., Behrendtsen, O., & Werb, Z. (2000). Hypersensitivity to DNA damage leads to increased apoptosis during early mouse development. Genes & Development, 14(16), 2072–2084.Google Scholar
- Hodkinson, P. D., Anderton, R. A., Posselt, B. N., & Fong, K. J. (2017). An overview of space medicine. British Journal of Anaesthesia, 119(S1), i43–i53.Google Scholar
- Holmes, D. J. (2017). Women’s health in post-menopausal age. In G. Jasienka, D. S. Sherry, & D. J. Holmes (Eds.), The arc of life: Evolution and health across the life course (pp. 139–157). New York: Springer.Google Scholar
- Holstein, A.-F., Schulze, W., & Davidoff, M. (2003). BioMed Central document at http://www.rbej.com/content/1/1/107.
- Honda, Y., et al. (2012). Genes down-regulated in spaceflight are involved in the control of longevity in Caenorhabditis elegans. Nature Scientific Reports, 2(487), 2–7. https://doi.org/10.1038/srep00487.CrossRefGoogle Scholar
- Horn, E. (2006). Animal development in microgravity. In G. Clement & K. Slenzka (Eds.), Fundamentals of space biology: Research on cells, animals and plants in space (pp. 171–226). El Segundo, CA: Microcosm Press; New York: Springer.Google Scholar
- Hoson, T. (2014). Plant growth and morphogenesis under different gravity conditions: Relevance to plant life in space. Life, 4(2), 205–216. https://doi.org/10.3390/life4020205.CrossRefGoogle Scholar
- Ibtisham, F., Wu, J., Xiao, M., An, L., et al. (2017). Progress and future prospect of in vitro spermatogenesis. Oncotarget, 8(39), 66709–66727.CrossRefGoogle Scholar
- Ijiri, A. (2003). Life-cycle experiments of medaka fish aboard the International Space Station. Advances in Space Biology and Medicine, 9, 201–216.CrossRefGoogle Scholar
- Ijiri, K. (1998). Development of space-fertilized eggs and formation of primordial germ cells in the embryos of medaka fish. Advances in Space Research, 21(8–9), 1144–1188.Google Scholar
- Jakab, A., Schwartz, E., Kasprian, G., Gruber, G. M., Prayer, D., Schoft, V., & Langs, G. (2014). Fetal functional imaging portrays heterogeneous development of emerging human brain networks. Frontiers in Human Neuroscience online at https://doi.org/10.3389/fnhum.2014.00852.
- Janmaleki, M., et al. (2016). Impact of simulated microgravity on cytoskeleton and viscoelastic properties of endothelial cell. Scientific Reports, 6, 32418. https://doi.org/10.1038/srep32418.ADSCrossRefGoogle Scholar
- Jennings, R. T., Murphy, D. M. F., Ware, D. L., et al. (2006). Medical qualification of a commercial spaceflight participant: Not your average astronaut. Aviation, Space and Environmental Medicine, 77(5), 475–484.Google Scholar
- Jonscher, K. R., et al. (2016). Spaceflight activates lipotoxic pathways in mouse liver. PLOS One, 11(5), e0155282. https://doi.org/10.1371/journal.pone.0155282.CrossRefGoogle Scholar
- Kapia, A., & Hsueh, A. J. (1997). Regularion of ovarian follicle atresia. Annual Review of Physiology, 1997, 349–363.CrossRefGoogle Scholar
- Kirschnick, U., Agricol, H.-J., & Horn, E. R. (2006). Effects of altered gravity on identified peptidergic neurons of the cricket Acheta domesticus. Gravitational and Space Biology Bulletin, 19(2), 135–136.Google Scholar
- Lane, H. W., & Feeback, D. L. (2002). History of nutrition in space flight: Overview. Nutrition, 18(10), 797–804.CrossRefGoogle Scholar
- Latham, K. E., & Schultz, R. M. (2001). Embryonic genome activation. Frontiers of Bioscience, 6, d748–d759. https://www.bioscience.org/2001/v6/d/latham/fulltext.htm.
- Leffler, E. M., Bullaughey, K., Matute, D., Meyer, W. K., Segruel, L., Venkat, A., et al. (2012). Revisiting and old riddle: What determines genetic diversity levels within species? PLOS Biology, 10(9), 1–9.CrossRefGoogle Scholar
- Loomer, P. M. (2001). The impact of microgravity on bone metabolism in vitro. Critical Reviews in Oral Biology and Medicine, 12(3), 252–261.CrossRefGoogle Scholar
- Louis, F., Deroanne, C., Nusgens, B., Vico, L., & Guignandon, A. (2015). RhoGTPases as key players in mammalian cell adaptation to microgravity. Biomedical Research International, 2015, 747693. https://doi.org/10.1155/2015/747693.CrossRefGoogle Scholar
- Lynch, M. (2010). Rate, molecular spectrum, and consequences of human mutation. Proceedings of the National Academy of Sciences, 107(3), 961–968.ADSCrossRefGoogle Scholar
- Mark, S., Graham, B. I., Donoviel, D. B., et al. (2014). The impact of sex and gender on adaptation to space: Executive summary. Journal of Women’s Heath, 3(11), 941–947.CrossRefGoogle Scholar
- Miao, Y.-L., Kikuchi, K., Sun, Q.-Y., & Schatten, H. (2009). Oocyte aging: Cellular and molecular changes, developmental potential and reversal possibility. Human Reproduction Update, 15(5), 573–585. https://doi.org/10.1093/humupd/dmp014.CrossRefGoogle Scholar
- Mistry, K. B., et al. (2012). A new framework for childhood health promotion: The role of policies and programs in building capacity and foundations of early childhood health. American Journal of Public Health, 102(9), 1688–1696.CrossRefGoogle Scholar
- Miyake, M., Hazama, A., Nielsen, S., & Shimizu, T. (2004). Effects of microgravity on organ development of the neonatal rat. Biological Sciences in Space, 18, 126–127.Google Scholar
- National Academies of Science of the United States of America. (2006). Space radiation hazards and the vision for space exploration. Washington, D.C.: National Academies Press.Google Scholar
- National Academies of Science of the United States of America. (2018). A midterm assessment of implementation of the decadal survey on life and physical sciences research at NASA. Washington, D.C.: National Academies Press.Google Scholar
- National Academies of Science of the United States. (2013). Reducing maternal and neonatal mortality in Indonesia: Saving lives, saving the future. National Academies Press.Google Scholar
- National Institutes of Health. (2019). Preconception care and prenatal care. See https://www.nichd.nih.gov/health/topics/preconceptioncare/conditioninfo/health-problems.
- Neubert, J. B., et al. (1998). Effects of gravity on early development. Advances in Space Research, 22(2), 265–271.ADSCrossRefGoogle Scholar
- Nikolaev, A., & Yang, E. S. (2017). The impact of DNA repair pathways in cancer biology and therapy. Cancers, 9(9). https://doi.org/10.3390/cancers9090126.
- Ning, L.-N., Lei, X.-H., Cao, Y.-J., Zhang, Y.-F., Cao, Z.-H., Chen, Q., et al. (2015). Effect of short-term hypergravity treatment on mouse 2-cell embryo development. Microgravity Science and Technology, 27(6), 465–471.ADSCrossRefGoogle Scholar
- Norbury, J. W., et al. (2016). Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life Sciences in Space Research, 8, 38–51. https://doi.org/10.1016/j.lssr.2016.02.001.ADSCrossRefGoogle Scholar
- Ogneva, I. V., Belyakin, S. N., & Sarantesva, S. V. (2016). The development of Drosophila menalogaster under different duration space flight and subsequent adaptations to Earth gravity. PLOS One, 11, e0166885. https://doi.org/10.1371/journal.pone.0166885.CrossRefGoogle Scholar
- Olson, W. M., Wiens, D. J., Gaul, T. L., Rodriguez, M., & Hauptmeier, C. L. (2010). Xenopus development from late gastrulation of feeding tadpole in simulated microgravity. International Journal of Developmental Biology, 45, 167–174.CrossRefGoogle Scholar
- Ombelet, W., Menkveld, R., Kruger, T. F., & Steeno, O. (1995). Sperm morphology assessment: Historical review in relation to fertility. Human Reproduction Update, 1(6), 543–557.CrossRefGoogle Scholar
- Page 2 of Delaney, L., & Smith, J. P. (2012). Childhood health: Trends and consequences over the life-course. Future Child, 22(2), 43–63.Google Scholar
- Pan, D. (2007). Hippo signaling in organ size control. Genes & Development, 21, 886–897. https://doi.org/10.1101/gad.1536007.CrossRefGoogle Scholar
- Papaseit, C., Pochon, N., & Tabony, J. (2000). Microtubule self-organization is gravity-dependent. Proceedings of the National Academies of Science of the United States of America, 97(15), 8364–8368.ADSCrossRefGoogle Scholar
- Pellegrini, M., Di Siena, S., Claps, G., Di Cesare, S., Dolci, S., Rossi, P., et al. (2010). Microgravity promotes differentiation and meiotic entry of postnatal mouse male germ cells. PLoS One, 5, e9064. https://doi.org/10.1371/journal.pone.0009064.ADSCrossRefGoogle Scholar
- Ricci, G., Catizone, A., Esposito, R., & Galdieri, M. (2004). Microgravity effect on testicular functions. Journal of Gravitational Physiology, 11(2), 61–69.Google Scholar
- Richard, S., Henggeler, D., Ille, F., Beck, S. V., Moeckli, M., Forster, I. C., et al. (2012). A semi-automated electrophysiology system for recording from Xenopus Oocytes under microgravity conditions. Microgravity Science and Technology, 24(4), 237–244.ADSCrossRefGoogle Scholar
- Ross, M. D., & Tomko, D. L. (1998). Effect of gravity on vestibular neural development. Brain Research Reviews, 28(1–2), 44–51.CrossRefGoogle Scholar
- Russell, W. L., Russell, L. B., & Kelly, E. M. (1960). Dependence of mutation rate on radiation intensity. International Journal of Radiation Biology, 1960(Supplement), 311–320.Google Scholar
- Schimmerling, W. (2010). Accepting space radiation risks. Radiation Environments and Biophysics, 49, 325–329.CrossRefGoogle Scholar
- Searby, N. D., Steele, C. R., & Globus, R. K. (2005). Influence of increased mechanical loading by hypergravity on the microtubule cytoskeleton and prostaglandin E2 release in primary osteoblasts. American Journal of Physiology and Cellular Physiology, 289(1), C148–C158.CrossRefGoogle Scholar
- Serova, L. V. (1989). Effect of weightlessness on the reproductive system of mammals. Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina, 23(2), 11–16.Google Scholar
- Servick, K. (2015, April 27). Gene activation therapy prevents liver damage in mice. Science. https://doi.org/10.1126/science.aab2549.
- Shimada, A., et al. (2005). Germ cell mutagenesis in medaka fish after exposures to high-energy cosmic ray nuclei: A human model. Proceedings of the National Academies of Science of the United States of America, 102(17), 6063–6067.ADSCrossRefGoogle Scholar
- Simonsen, L. C. (2015). Mars mission and space radiation risks: Space radiation research and technologies for risk mitigation briefing to NAC HEO/SMD Joint Committee April 7, 2015. Online at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160006861.pdf.
- Singh, K., Cubano, L., & Lewis, M. (2010). Effects of gravity perturbation on developing animal systems. Advances in Space Research, 6(12), 29–36.Google Scholar
- Smith, C. M. (2011). The fact of evolution. New York: Penguin Random House.Google Scholar
- Smith, I. M., & Forsman, A. D. (2012). Ovarian follicular and luteal development in the spaceflight mouse. Gravitational and Space Biology, 26(2), 30–37.Google Scholar
- Souza, K. H., Black, S. D., & Wassersug, R. J. (1995). Amphibian development in the virtual absence of gravity. Proceedings of the National Academies of Science of the United States of America, 9, 1975–1978.ADSCrossRefGoogle Scholar
- Tan, X. (2006). The effects of microgravity on gametogenesis, fertilization, and early embryogenesis. Paper delivered at 36th Committee on Space Research Scientific Assembly. Held 16–23 July 2006, in Beijing, China. Meeting abstract from the CDROM, #3631. Online at http://adsabs.harvard.edu/abs/2006cosp.meet.3631T.
- Tash, J. S., & Bracho, G. E. (1999). Microgravity alters protein phosphorylation changes during initiation of sea urchin sperm motility. FASEB Journal, 13(9001), 843–854.CrossRefGoogle Scholar
- Tash, J. S., Johnson, D. C., & Enders, G. C. (2002). Long-term (6-wk) hindlimb suspension inhibits spermatogenesis in adult male rats. Journal of Applied Physiology, 92(3), 1191–1198.CrossRefGoogle Scholar
- Thibeault, S. A., Kang, J. H., Sauit, G., & Park, C. (2015). Nanomaterials for radiation shielding. Materials Research Society Bulletin: Engineered Nanomaterials in Aerosopace, 40(10), 836–841.CrossRefGoogle Scholar
- Tourmente, M., Gormendio, M., & Foldan, E. R. S. (2011). Sperm competition and the evolution of sperm design in mammals. BMC Evolutionary Biology, 11, 12. Online at http://www.biomedcentral.com/1471-2148/11/12.
- US Social Security Administration Actuarial Tables. (2018). Online at https://www.ssa.gov/oact/STATS/table4c6.html.
- Vaquer, A.-F., & Hadjantonakis, A.-K. (2013). Birth defects associated with perturbations in pre-implantation, gastrulation and axis extension: From conjoined twinning to caudal dysgenesis. Wiley Interdisciplinary Review of Biology, 2(4), 427–442.CrossRefGoogle Scholar
- Vernós, I., González-Jurado, J.-, Calleja, M., & Marco, R. (1989). Microgravity effects on the oogenesis and development of embryos of Drosophila melanogaster laid in the Spaceshuttle during the Biorack experiment (ESA). International Journal of Developmental Biology, 33(2), 213–216.Google Scholar
- Villanueva, M. M., Wong, M., Lu, T., Zhang, Y., & Wu, H. (2017). Interplay of space radiation and microgravity in DNA damage and DNA damage response. Microgravity, 3, 14. https://doi.org/10.1038/s41526-017-0019-7.CrossRefGoogle Scholar
- Wakayama, S., et al. (2017). Healthy offspring from freeze-dried mouse spermatozoa held on the International Space Station for 9 months. Proceedings of the National Academies of Science of the United States of America, 114(23), 5988–5993.CrossRefGoogle Scholar
- Wakayama, S., Kwahara, Y., Li, C., Yamagata, K., Yuge, L., & Wakayama, T. (2009). Detrimental effects of microgravity on mouse preimplantation development in vitro. PLoS ONE, 4(8), e6753. Online at pone.0006753 1..10.Google Scholar
- Wang, Y., An, L., Jiang, Y., & Hang, H. (2011). Effects of simulated microgravity on embryonic stem cells. PLoS ONE, 6, e29214. https://doi.org/10.1371/journal.pone.0029214.ADSCrossRefGoogle Scholar
- Woese, C. R. (2004). A new biology for a new century. Microbiology and Molecular Biology Reviews, 68(2), 173–186.CrossRefGoogle Scholar
- Wohlgemuth, D. J., & Murashov, A. K. (1995). Models and molecular approaches to assessing the effects of the microgravity environment and vertebrate development. American Society for Gravitational and Space Biology Bulletin, 8(2), 63–71.Google Scholar
- Wolpert, L. (2008). Triumph of the embryo. Mineola, New York: Dover Publications.Google Scholar
- Woodbury, R. A., Hamilton, W. F., & Torpin, R. (1938). The relationship between abdominal, uterine and arterial pressures during labor. American Journal of Physiology, 121(3), 640–649.CrossRefGoogle Scholar
- World Bank. (2018). Life expectancy at birth. See https://data.worldbank.org/indicator/SP.DYN.LE00.IN?end=2016&locations=US&start=1960&view=chart.
- World Health Organization. (2006). Promoting optimal fetal development: Report of a technical consultation. Available at https://www.who.int/nutrition/publications/fetomaternal/9241594004/en/.
- Wu, C., Guo, X., Wang, F., Li, X., Tian, C., Li, L., et al. (2011). Simulated microgravity compromises mouse oocyte maturation by disrupting meiotic spindle organization and inducing cytoplasmic blebbing. PLoS ONE, 6(7), e22214. https://doi.org/10.1371/journal.pone.0022214.ADSCrossRefGoogle Scholar
- Xie, Y., Wang, F., Zhong, W., Puscheck, E., Shen, H., & Rapollee, D. A. (2006). Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis. Biology of Reproduction, 75(1), 45–55.CrossRefGoogle Scholar
- Yamauchi, Y., Riel, J. M., Ruthig, V. A., Ortega, E. A., Mitchell, M. J., & Ward, M. A. (2016). Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction. Science, 351(6272), 514–516.ADSCrossRefGoogle Scholar
- Yatagai, F., & Ishioka, N. (2014). Are biological effects of space radiation really altered under the microgravity environment? Life Sciences in Space Research, 3, 76–89.ADSCrossRefGoogle Scholar