An Introduction to Space Anthropology

  • Cameron M. SmithEmail author
Part of the Space and Society book series (SPSO)


This chapter introduces two central concepts: first, human space settlement as adaptive evolution, and second, how evolutionary and anthropological sciences can aid in making the project of human space colonization more likely to succeed. I then continue by defining some basic concepts and terms, and the essential time- and space-thoughtscapes addressed in this book.


  1. Alland, A. (1970). Adaptation and cultural evolution: An approach to medical anthropology. New York: Columbia University Press.Google Scholar
  2. Billings, L. (2018). Should humans colonize other planets? No. Theology and Science, 15(3), 321–332. Scholar
  3. Bonvillain, N. (2006). Cultural anthropology. New Jersey: Pearson.Google Scholar
  4. Cachel, S. (2015). Fossil primates. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  5. Chancellor, J. C., et al. (2014). Space radiation: The number one risk to astronaut health beyond low Earth orbit. Life, 4, 491–510. Scholar
  6. Cheremisin, A. A., Vassilyev, Y. V., & Horvath, H. (2005). Gravito-photophoresis and aerosol stratification in the atmosphere. Journal of Aerosol Science, 36(11), 1277–1299.ADSCrossRefGoogle Scholar
  7. Childe, V. G. (1950). The urban revolution. Town Planning Review, 21, 3–17.CrossRefGoogle Scholar
  8. Costello, E. K., et al. (2009). Bacterial community variation in human body habitats across space and time. Science, 326, 1694–1697.ADSCrossRefGoogle Scholar
  9. Daniel, A. S., Schmidt, J., & Hughes, J. M. (2013). Indirect estimates of natal dispersal distance from genetic data in a stream-dwelling fish (Mogurnda adspersa). Journal of Heredity, 104(6), 779–790.CrossRefGoogle Scholar
  10. Day, M. H. (1986). Guide to fossil man. Chicago: Chicago University Press.Google Scholar
  11. Durham, W. H. (1991). Coevolution: Genes, culture and human diversity. Stanford: Stanford University Press.Google Scholar
  12. Edgerton, R. B. (1992). Sick societies: Challenging the myth of primitive harmony. New York: Free Press.Google Scholar
  13. Elmer, K. R., et al. (2009). Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria Haplochromine Cichlid Fishes. Proceedings of the National Academy of Sciences (USA), 106(32), 13404–13409.ADSCrossRefGoogle Scholar
  14. EPA. (2018). Radiation sources and doses. United States Environmental Protection Agency. See
  15. European Space Agency. (2018). What are lagrange points? See
  16. Fennnell, C. C. (2007). Crossroads and cosmologies: Diasporas and ethnogenesis in the new world. African Diaspora Archaeology Newsletter, 10(3), 16.Google Scholar
  17. Ferraro, G. (2006). Cultural anthropology: An applied perspective (6th ed.). Belmont, California: Thompson/Wadsworth.Google Scholar
  18. Findlay, B. J. (2002). Global dispersal of free-living microbial eukaryote species. Science, 296(5570), 1061–1063.ADSCrossRefGoogle Scholar
  19. Finney, B. (1992). Space migrations: Anthropology and the humanization of space.Google Scholar
  20. Finney, B., & Jones, E. (Eds.). (1985). Interstellar migration and the human experience. Berkeley: University of California Press.Google Scholar
  21. Fried, M. N., & Fried, M. H. (1980). Transitions: Four rituals in eight cultures. New York: W.W. Norton & Co. My paraphrasing of the Tikopia dirge and mention of the !San marking at the time of first killing a large male animal are derived from this work.Google Scholar
  22. Frisancho, A. R. (1993). Human adaptation and accomodation. Ann Arbor: University of Michigan Press.Google Scholar
  23. Gerathewohl, S. (1963). Principles of bioastronautics. New Jersey: Prentice-Hall.Google Scholar
  24. Gotthard, K., & Nylin, S. (1995). adaptive plasticity and plasticity as an adaptation: A selective review of plasticity in animal morphology and life history. Oikos, 74(1), 3–17.CrossRefGoogle Scholar
  25. Hassler, D. M., et al. (2013). Mars’ surface radiation environment measured with the mars science laboratory’s curiosity rover. Science, 343(6169), 1244797. Scholar
  26. Hein, A., Smith, C. M., & Marin, F. (2019). Worldships: A review. Acta Future: European Space Agency Advanced Concepts Office. In press.Google Scholar
  27. Henry, T. (1985 [1928]). Ancient tahiti: Based on material recorded by J. M. Orsmond. Bernice P. Bishop Museum Bulletin 48, Honolulu.Google Scholar
  28. Jasienska, F., Sherry, D. S., & Holmes, D. J. (Eds.). (2017). The arc of life: Evolution and health across the life course. New York: Springer-Verlag.Google Scholar
  29. Kinlan, B. P., & Gaines, S. D. (2003). Dispersal in marine and terrestrial environments: A community peerspective. Ecology, 84(8), 2007–2020.CrossRefGoogle Scholar
  30. Klein, R. G. (2009). The human career. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  31. Lang, K. R. (2000). The Sun from space. New York: Springer.CrossRefGoogle Scholar
  32. Lavenda, R. H., & Schultz, E. A. (2013). Core concepts in cultural anthropology (5th ed.). New York: McGraw-Hill.Google Scholar
  33. Love, A. C. (2010). Rethinking the structure of evolutionary theory for an extended synthesis. In M. Pigliucci & G. B. Muller (Eds.), Evolution: The extended synthesis. Cambridge: Massachusetts Institute Press.Google Scholar
  34. Maciel, W. J. (2013). Astrophysics of the interstellar medium. New York: Springer.CrossRefGoogle Scholar
  35. Malina, R. M. (1975). Growth and development in man. Minnesota: Burgess Publishing Company.Google Scholar
  36. McShea, D. W., & Brandon, R. N. (2010). Biology’s first law: The tendency for diversity & complexity to increase in evolutionary systems. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  37. Meyer-Vernet, N., & Rospars, J.-P. (2016). Maximum relative speeds of living organisms: Why do bacteria perform as fast as ostriches? American Journal of Physics, 83, 719.
  38. Moran, E. F. (1979). Human adaptability: An introduction to ecological anthropology. North Sciutate, Massachusetts: Duxbury Press.Google Scholar
  39. NASA. (2018). Brief summary of requirements for landers and rovers. Office of Planetary Protection. See
  40. Nettle, D. (1999). Is the rate of linguistic change constant? Lingua, 108, 119–136.CrossRefGoogle Scholar
  41. Ohno, S., et al. (2017). The biopause project: Balloon experiments for sampling stratospheric bioaerosol. Lunar and Planetary Science, XLVIII, 1890.Google Scholar
  42. Paradis, E., Ballie, S. R., Sutherland, W. J., & Gregory, R. S. (1998). Patterns of natal and breeding dispersal in birds. Journal of Animal Ecology, 67, 518–536.CrossRefGoogle Scholar
  43. Pasinelli, G., Scheigg, K., & Walters, J. R. (2005). Genetic and environmental influences on natal dispersal distance in a resident bird species. The American Naturalist, 164(5), 660–669.CrossRefGoogle Scholar
  44. Raup, D. M. (1994). the role of extinction in evolution. Proceedings of the National Academies of Science of the United States, 91, 6758–6763.ADSCrossRefGoogle Scholar
  45. Reitz, G., Berger, T., & Matthia, D. (2012). Radiation exposure in the moon environment. Planetary and Space Science, 74(1), 78–83. Scholar
  46. Reyes-Garcia, V., et al. (2016). Multilevel processes and cultural adaptations: Examples from past and present small-scale societies. Ecology and Society, 21(4), 2. Scholar
  47. Serpell, R., & Boykin, A. W. (1994). Cultural dimensions of cognition: A multiplex, dynamic system of constraints and possibilities. In R. Sternberg (Ed.), Handbook of perception and cognition II: Thinking and problem solving (pp. 369–408). San Diego: Academic Press.CrossRefGoogle Scholar
  48. Smith, C. M. (2011). The fact of evolution. New York: Penguin Random House.Google Scholar
  49. Smith, C. M. (2014a). Estimation of a genetically viable population for multigenerational interstellar voyaging: Review and data for project hyperion. Acta Astronautica, 97(2014), 16–29.ADSCrossRefGoogle Scholar
  50. Smith, C. M. (2014b). Starship humanity. Scientific American, 308, 39–43.Google Scholar
  51. Smith, C. M. (2016). An adaptive paradigm for human space settlement. Acta Astronautica, 119, 207–217.ADSCrossRefGoogle Scholar
  52. Smith, C. M. (2017). Evolutionary and archaeological perspectives on estimating the likelihood of civilization collapse. Nanotechnology Perceptions, 13(2), 116–122.CrossRefGoogle Scholar
  53. Smith, C. M. (2018). An atlas of human prehistory. San Diego: Cognella Academic Publishing.Google Scholar
  54. Smith, C. M., & Davies, E. T. (2006). The extraterrestrial adaptation. Spaceflight, 47, 85.Google Scholar
  55. Smith, C. M., & Davies, E. T. (2012). Emigrating beyond earth: Human adaptation and: Space colonization. Springe-Praxis.Google Scholar
  56. Smith, C. M., Gabora, L., & Gardner-O’Kearny, W. (2018). The extended evolutionary synthesis paves the way for a theory of cultural evolution. Cliodynamics, 9(2), Winter.Google Scholar
  57. Smith, D. J., Griffin, D. W., McPeters, R. D., Ward, P. D., & Shuerger, A. C. (2009). Microbial survival in the stratosphere and implications for global dispersal. Aerobiologia, 27, 319–332.CrossRefGoogle Scholar
  58. Space. (1992) NASA SP-509: Space resources, Volume 4: Social concerns. Washington, D.C.Google Scholar
  59. Stoner, I. (2017). Humans should not colonize Mars. Journal of the American Philosophical Association, 3(3), 334–353. Scholar
  60. Strickberger, M. W. (1985). Genetics (3rd ed.). New York: MacMillan.Google Scholar
  61. Sutherland, G. D., Harestad, A. S., Price, K., & Lertzman, K. P. (2000). Scaling of natal dispersal distances in terrestrial birds and mammals. Conservation Ecology, 4(1), 16.
  62. Szathmary, E. (2015). Toward major evolutionary transitions theory 2.0. Proceedings of the National Academies of Science of the United States, 112(33), 10104–10111.ADSCrossRefGoogle Scholar
  63. Tainter, J. A. (1990). The collapse of complex societies. Cambridge: Cambridge University Press.Google Scholar
  64. Taras, V., Rowney, J., & Steel, P. (2009). Half a century of measuring culture: Review of approaches, challenges, and limitations based on the analysis of 121 instruments for quantifying culture. Journal of International Management, 15, 357–373. Scholar
  65. Trigger, B. (1992). Understanding early civilizations. Cambridge: Cambridge University Press.Google Scholar
  66. Tsiolkovski, K. (1933). Album of space travel (Kaluga, Tsiolkovsky State Museum of the History of Cosmonautics). See
  67. Vermeij, G. J. (1978). Biogeography and adaptation. Cambridge: Harvard University Press.Google Scholar
  68. Vermeij, G. J. (2000). Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems? Biological Journal of the Linnean Society, 70, 541–554.CrossRefGoogle Scholar
  69. Vermeij, G. J. (2008). Security, unpredictability, and evolution: Policy and the history of life. In R. Sagarin & T. Taylor (Eds.), Natural security: A darwinian approach to a dangerous world. Berkeley: University of California Press.Google Scholar
  70. Weiss, H., & Bradley, R. S. (2001). What drives societal collapse? Science, 26(291), 609–610.CrossRefGoogle Scholar
  71. Wenke, R., & Olszewski, D. I. (2006). Patterns in prehistory. Oxford: Oxford University Press.Google Scholar
  72. Wheeler, R. M., & Martin-Brennan, C. (Eds). (2000). Mars greenhouses: Concepts and challenges. In Proceedings from a 1999 workshop. Florida: NASA-Kennedy.Google Scholar
  73. White, L. A. (1959). The evolution of culture. New York: McGraw-Hill Book Company.Google Scholar
  74. Yang, Y., et al. (2005). Investigation of cultivable microorganisms in the stratosphere collected by using a balloon in 2005. Japanese Aerospace Research Association paper available at

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of AnthropologyPortland State UniversityPortlandUSA

Personalised recommendations