Skip to main content

An Improved Fixed-Parameter Algorithm for Max-Cut Parameterized by Crossing Number

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11638))

Included in the following conference series:

Abstract

The Max-Cut problem is known to be NP-hard on general graphs, while it can be solved in polynomial time on planar graphs. In this paper, we present a fixed-parameter tractable algorithm for the problem on “almost” planar graphs: Given an n-vertex graph and its drawing with k crossings, our algorithm runs in time \(O(2^k(n+k)^{3/2} \log (n + k))\). Previously, Dahn, Kriege and Mutzel (IWOCA 2018) obtained an algorithm that, given an n-vertex graph and its 1-planar drawing with k crossings, runs in time \(O(3^k n^{3/2} \log n)\). Our result simultaneously improves the running time and removes the 1-planarity restriction.

This work is partially supported by JSPS KAKENHI Grant Numbers JP16H02782, JP16K00017, JP16K16010, JP17H01788, JP18H04090, JP18H05291, JP18K11164, and JST CREST JPMJCR1401.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bodlaender, H.L., Jansen, K.: On the complexity of the maximum cut problem. Nordic J. Comput. 7(1), 14–31 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Chimani, M., Dahn, C., Juhnke-Kubitzke, M., Kriegem, N.M., Mutzel, P., Nover, A.: Maximum Cut Parameterized by Crossing Number. arXiv:1903.06061 (2019)

  3. Crowston, R., Jones, M., Mnich, M.: Max-cut parameterized above the Edwards-Erdös Bound. Algorithmica 72(3), 734–757 (2015)

    Article  MathSciNet  Google Scholar 

  4. Dahn, C., Kriege, N.M., Mutzel, P.: A fixed-parameter algorithm for the max-cut problem on embedded 1-planar graphs. In: Iliopoulos, C., Leong, H.W., Sung, W.-K. (eds.) IWOCA 2018. LNCS, vol. 10979, pp. 141–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94667-2_12

    Chapter  Google Scholar 

  5. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: Proceedings of STOC 1983, pp. 448–456 (1983)

    Google Scholar 

  6. Galluccio, A., Loebl, M., Vondrák, J.: Optimization via enumeration: a new algorithm for the max cut problem. Math. Program. 90(2), 273–290 (2001)

    Article  MathSciNet  Google Scholar 

  7. Gaspers, S., Sorkin, G.B.: Separate, measure and conquer: faster polynomial-space algorithms for max 2-CSP and counting dominating sets. ACM Trans. Algorithms 13(4), 44:1–44:36 (2017)

    Article  Google Scholar 

  8. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problem using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  9. Guruswami, V.: Maximum cut on line and total graphs. Discrete Appl. Math. 92, 217–221 (1999)

    Article  MathSciNet  Google Scholar 

  10. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4(3), 221–255 (1975)

    Article  MathSciNet  Google Scholar 

  11. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  Google Scholar 

  12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  13. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)

    Article  MathSciNet  Google Scholar 

  14. Liers, F., Pardella, G.: Partitioning planar graphs: a fast combinatorial approach for max-cut. Comput. Optim. Appl. 51(1), 323–344 (2012)

    Article  MathSciNet  Google Scholar 

  15. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)

    Article  MathSciNet  Google Scholar 

  16. Madathil, J., Saurabh, S., Zehavi, M.: Max-Cut Above Spanning Tree is fixed-parameter tractable. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS, vol. 10846, pp. 244–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90530-3_21

    Chapter  Google Scholar 

  17. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)

    Article  MathSciNet  Google Scholar 

  18. Orlova, G.I.: Dorfman: finding the maximal cut in a graph. Eng. Cybern. 10(3), 502–506 (1972)

    MATH  Google Scholar 

  19. Pilipczuk, M., Pilipczuk, M., Wrochna, M.: Edge bipartization faster then \(2^k\). In: Proceedings of IPEC 2016. LIPIcs. vol. 62, pp. 26:1–26:13 (2016)

    Google Scholar 

  20. Pocai, R.V.: The complexity of SIMPLE MAX-CUT on comparability graphs. Electron. Notes Discrete Math. 55, 161–164 (2016)

    Article  Google Scholar 

  21. Raman, V., Saurabh, S.: Improved fixed parameter tractable algorithms for two “edge” problems: MAXCUT and MAXDAG. Inf. Process. Lett. 104(2), 65–72 (2007)

    Article  MathSciNet  Google Scholar 

  22. Shih, W.-K., Wu, S., Kuo, Y.S.: Unifying maximum cut and minimum cut of a planar graph. IEEE Trans. Comput. 39(5), 694–697 (1990)

    Article  MathSciNet  Google Scholar 

  23. Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approximation, and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)

    Article  MathSciNet  Google Scholar 

  24. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348(2–3), 357–365 (2005)

    Article  MathSciNet  Google Scholar 

  25. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proceedings of STOC 1978, pp. 253–264 (1978)

    Google Scholar 

Download references

Acknowledgements

The authors deeply thank anonymous referees for giving us valuable comments. In particular, one of the referees pointed out a flaw in an early version of Lemma 1, which has been fixed in the current paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kobayashi, Y., Kobayashi, Y., Miyazaki, S., Tamaki, S. (2019). An Improved Fixed-Parameter Algorithm for Max-Cut Parameterized by Crossing Number. In: Colbourn, C., Grossi, R., Pisanti, N. (eds) Combinatorial Algorithms. IWOCA 2019. Lecture Notes in Computer Science(), vol 11638. Springer, Cham. https://doi.org/10.1007/978-3-030-25005-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25005-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25004-1

  • Online ISBN: 978-3-030-25005-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics