Skip to main content

Extension and Its Price for the Connected Vertex Cover Problem

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11638))

Included in the following conference series:

Abstract

We consider extension variants of Vertex Cover and Independent Set, following a line of research initiated in [9]. In particular, we study the Ext-CVC and the Ext-NSIS problems: given a graph \(G=(V,E)\) and a vertex set \(U \subseteq V\), does there exist a minimal connected vertex cover (respectively, a maximal non-separating independent set) S, such that \(U\subseteq S\) (respectively, \(U \supseteq S\)). We present hardness results for both problems, for certain graph classes such as bipartite, chordal and weakly chordal. To this end we exploit the relation of Ext-CVC to Ext-VC, that is, to the extension variant of Vertex Cover. We also study the Price of Extension (PoE), a measure that reflects the distance of a vertex set U to its maximum efficiently computable subset that is extensible to a minimal connected vertex cover, and provide negative and positive results for PoE in general and special graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This class is introduced in [19], as the class of graphs \(G=(V,E)\) with no chordless cycle of five or more vertices in G or in its complement \(\overline{G}=(V,\overline{E})\).

References

  1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-58412-1

    Book  MATH  Google Scholar 

  2. Bazgan, C., Brankovic, L., Casel, K., Fernau, H.: On the complexity landscape of the domination chain. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 61–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2_6

    Chapter  Google Scholar 

  3. Bazgan, C., et al.: The many facets of upper domination. Theor. Comput. Sci. 717, 2–25 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity (ECCC) (049) (2003)

    Google Scholar 

  5. Boria, N., Croce, F.D., Paschos, V.T.: On the max min vertex cover problem. Discrete Appl. Math. 196, 62–71 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean functions. Optim. Methods Softw. 10(2), 147–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardinal, J., Levy, E.: Connected vertex covers in dense graphs. Theor. Comput. Sci. 411(26–28), 2581–2590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casel, K., et al.: Complexity of independency and cliquy trees. Discrete Appl. Math. (2019, in press)

    Google Scholar 

  9. Casel, K., Fernau, H., Ghadikolaei, M.K., Monnot, J., Sikora, F.: Extension of vertex cover and independent set in some classes of graphs and generalizations. In: CIAC 2019. LNCS (2018, accepted). See also CoRR, abs/1810.04629

    Google Scholar 

  10. Casel, K., Fernau, H., Ghadikolaei, M.K., Monnot, J., Sikora, F.: On the complexity of solution extension of optimization problems. CoRR, abs/1810.04553 (2018)

    Google Scholar 

  11. Damian-Iordache, M., Pemmaraju, S.V.: Hardness of approximating independent domination in circle graphs. ISAAC 1999. LNCS, vol. 1741, pp. 56–69. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46632-0_7

    Chapter  MATH  Google Scholar 

  12. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs. J. Discrete Algorithms 8(1), 36–49 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farber, M.: Domination, independent domination, and duality in strongly chordal graphs. Discrete Appl. Math. 7(2), 115–130 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fernau, H.: Parameterized algorithmics: A graph-theoretic approach. Habilitationsschrift, Universität Tübingen, Germany (2005)

    Google Scholar 

  15. Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: complexity and algorithms. J. Discrete Algorithms 7(2), 149–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  18. Golovach, P.A., Heggernes, P., Kratsch, D.: Enumeration and maximum number of minimal connected vertex covers in graphs. Eur. J. Comb. 68, 132–147 (2018). Combinatorial Algorithms, Dedicated to the Memory of Mirka Miller

    Article  MathSciNet  MATH  Google Scholar 

  19. Hayward, R.B.: Weakly triangulated graphs. J. Comb. Theory Ser. B 39(3), 200–208 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal dominating sets and related notions. SIAM J. Discrete Math. 28(4), 1916–1929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: Polynomial delay algorithm for listing minimal edge dominating sets in graphs. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 446–457. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3_37

    Chapter  Google Scholar 

  22. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: A polynomial delay algorithm for enumerating minimal dominating sets in chordal graphs. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 138–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_11

    Chapter  MATH  Google Scholar 

  23. Kowalik, L., Mucha, M.: A 9k kernel for nonseparating independent set in planar graphs. Theor. Comput. Sci. 516, 86–95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krithika, R., Majumdar, D., Raman, V.: Revisiting connected vertex cover: FPT algorithms and lossy kernels. Theory Comput. Syst. 62(8), 1690–1714 (2018)

    Article  MathSciNet  Google Scholar 

  25. Manlove, D.F.: On the algorithmic complexity of twelve covering and independence parameters of graphs. Discrete Appl. Math. 91(1–3), 155–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Priyadarsini, P.K., Hemalatha, T.: Connected vertex cover in 2-connected planar graph with maximum degree 4 is NP-complete. Int. J. Math. Phys. Eng. Sci. 2(1), 51–54 (2008)

    Google Scholar 

  27. Savage, C.: Depth-first search and the vertex cover problem. Inf. Process. Lett. 14(5), 233–235 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Speckenmeyer, E.: On feedback vertex sets and nonseparating independent sets in cubic graphs. J. Graph Theory 12(3), 405–412 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Uehara, R.: Tractable and intractable problems on generalized chordal graphs. Technical report, Technical Report COMP98-83, IEICE (1999)

    Google Scholar 

  30. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete Math. 72(1–3), 355–360 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aris Pagourtzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khosravian Ghadikoalei, M., Melissinos, N., Monnot, J., Pagourtzis, A. (2019). Extension and Its Price for the Connected Vertex Cover Problem. In: Colbourn, C., Grossi, R., Pisanti, N. (eds) Combinatorial Algorithms. IWOCA 2019. Lecture Notes in Computer Science(), vol 11638. Springer, Cham. https://doi.org/10.1007/978-3-030-25005-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25005-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25004-1

  • Online ISBN: 978-3-030-25005-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics