Advertisement

Combinatorial Kalman Filter

  • Nils BraunEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The Combinatorial Kalman Filter (CKF) is a tracking concept that combines track finding and track fitting in a search-tree-based algorithm. It is used by many high energy physics experiments (Mankel and Spiridonov in Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 426(2–3):268–282, 1999, [1], Mankel in Rep Prog Phys 67(4):553–622, 2004, [2], CMS Collaboration in J Instrum 9(10):P10009–P10009, 2014, [3], ATLAS Collaboration in Eur Phys J C 77(10):673, 2017, [4])—often as the main tracking algorithm. Due to its combination of track finding and fitting, it can give precise results leading to high purities as well as high efficiencies.

References

  1. 1.
    Mankel R, Spiridonov A (1999) The Concurrent Track Evolution algorithm: extension for track finding in the inhomogeneous magnetic field of the HERA-B spectrometer. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 426(2–3):268–282. http://linkinghub.elsevier.com/retrieve/pii/S0168900299000133,  https://doi.org/10.1016/S0168-9002(99)00013-3ADSCrossRefGoogle Scholar
  2. 2.
    Mankel R (2004) Pattern recognition and event reconstruction in particle physics experiments. Rep Prog Phys 67(4):553–622. arXiv:0402039 [physics],  https://doi.org/10.1088/0034-4885/67/4/R03ADSCrossRefGoogle Scholar
  3. 3.
    CMS Collaboration (2014) Description and performance of track and primary-vertex reconstruction with the CMS tracker. J Instrum 9(10):P10009–P10009. arXiv:1405.6569,  https://doi.org/10.1088/1748-0221/9/10/P10009CrossRefGoogle Scholar
  4. 4.
    ATLAS Collaboration (2017) Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2. Eur Phys J C 77(10):673. arXiv:1704.07983,  https://doi.org/10.1140/epjc/s10052-017-5225-7
  5. 5.
    Künzel M, Glazov A, Guo A (2017) The VXD to CDC combinatorial Kalman filter. In: F2F tracking meeting. Pisa. https://indico.desy.de/indico/event/19161/session/6/contribution/9/material/slides/0.pdf
  6. 6.
    Braun N (2015) Momentum estimation of slow pions and improvements on the track finding in the central drift chamber for the Belle II experiment. Master’s thesis, KIT. https://ekp-invenio.physik.uni-karlsruhe.de/record/48740/files/EKP-2015-00052.pdf
  7. 7.
    Wagner J (2017) Track finding with the silicon strip detector of the Belle II experiment. Master’s thesis, KIT. https://ekp-invenio.physik.uni-karlsruhe.de/record/48930/files/EKP-2017-00057.pdf
  8. 8.
    Weiler MH (2016) Optimization of the VXD-CDC matching algorithm for the Belle II detector. Bachelor’s thesis, KIT. https://ekp-invenio.physik.uni-karlsruhe.de/record/48873/files/EKP-2016-00044.pdf
  9. 9.
    Billoir P (1989) Progressive track recognition with a Kalman-like fitting procedure. Comput Phys Commun 57(1–3):390–394. http://linkinghub.elsevier.com/retrieve/pii/001046558990249X,  https://doi.org/10.1016/0010-4655(89)90249-XADSCrossRefGoogle Scholar
  10. 10.
    Frühwirth R (1987) Application of Kalman filtering to track and vertex fitting. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 262(2–3):444–450. http://linkinghub.elsevier.com/retrieve/pii/0168900287908874,  https://doi.org/10.1016/0168-9002(87)90887-4ADSCrossRefGoogle Scholar
  11. 11.
    Gamma E (1995) Design patterns: elements of reusable object-oriented software. Addison-WesleyGoogle Scholar
  12. 12.
    Rauch J, Schlüter T (2015) GENFIT—a generic track-fitting toolkit. J Phys Conf Ser 608:012042. arXiv:1410.3698,  https://doi.org/10.1088/1742-6596/608/1/012042Google Scholar
  13. 13.
    Keck T (2017) FastBDT: a speed-optimized multivariate classification algorithm for the Belle II experiment. Comput Softw Big Sci 1(1):2. arXiv:1609.06119,  https://doi.org/10.1007/s41781-017-0002-8
  14. 14.
    Hoecker A, Speckmayer P, Stelzer J, Therhaag J et al (2007) TMVA-Toolkit for multivariate data analysis. http://arxiv.org/abs/physics/0703039
  15. 15.
    Lettenbichler J (2016) Real-time pattern recognition in the central tracking detector of the Belle II experiment. PhD thesis, Technische Universität Wien. http://www.ub.tuwien.ac.at
  16. 16.
    Schwenker B (2017) New ideas on PXD hit reconstruction and calibration from beam data. In F2F tracking meeting. Mainz. https://indico.desy.de/indico/event/18594/session/1/contribution/2/material/slides/0.pdf
  17. 17.
    Pulvermacher C (2015) Analysis software and full event interpretation for the Belle II experiment. PhD thesis, Karlsruher Instituts für Technologie. https://ekp-invenio.physik.uni-karlsruhe.de/record/48741/files/EKP-2015-00053.pdf
  18. 18.
    Bevan AJ, Golob B, Mannel T, Prell S et al (2014) The physics of the B factories. Eur Phys J C 74(11):3026. arXiv:1406.6311, http://link.springer.com/10.1140/epjc/s10052-014-3026-9,  https://doi.org/10.1140/epjc/s10052-014-3026-9
  19. 19.
    Niebuhr C (2018) PXD for phase 3-BPAC review october 2018. In: Belle II general meeting. Tsukuba. https://desycloud.desy.de/index.php/s/ZcYtqeL5zAt6cmo#pdfviewer
  20. 20.
    Shebalin V (2018) ECL luminosity monitoring. In: Belle II general meeting. Tsukuba. https://kds.kek.jp/indico/event/27570/session/50/contribution/15/material/slides/0.pdf
  21. 21.
    Fryberger D (2018) On magneticons and some related matters. arXiv:1412.8677, http://arxiv.org/abs/1807.09606
  22. 22.
    Pinfold JL (2014) The search for magnetic monopoles. Phys Today 69(10):40–46. arXiv:1412.8677,  https://doi.org/10.1063/PT.3.3328CrossRefGoogle Scholar
  23. 23.
    Sullivan MK, Fryberger D (2017) Magnetic charge search for the Belle II detector. arXiv:1707.05295, http://arxiv.org/abs/1707.05295
  24. 24.
    Neverov D (2018) The search for magnetic monopoles. In: AEPSHEP 2018Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ETPKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations