Advertisement

Foundations

  • Nils BraunEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The following chapter summarizes the basic mathematical and algorithmic foundations used throughout this thesis. The goal is to present the topics to a level of detail which helps to understand the work presented in the following chapters. For a more complete and thorough discussion, references on further reading are given in each section.

References

  1. 1.
    Gelb MJ (2018) Search for the rare decay B+ to l+ nu gamma with the full event interpretation at the Belle experiment. PhD thesis, KIT. https://ekp-invenio.physik.uni-karlsruhe.de/record/49050/files/EKP-2018-00029.pdf,  https://doi.org/10.5445/IR/1000085417
  2. 2.
    Keck T, Abudinen F, Bernlochner FU, Cheaib R et al (Jul 2018) The full event interpretation—an exclusive tagging algorithm for the Belle II experiment. arXiv:1807.08680
  3. 3.
    Braun N (2015) Momentum estimation of slow pions and improvements on the track finding in the central drift chamber for the Belle II experiment. Master’s thesis, KIT. https://ekp-invenio.physik.uni-karlsruhe.de/record/48740/files/EKP-2015-00052.pdf
  4. 4.
    Trusov V (2016) Development of pattern recognition algorithms for the central drift chamber of the Belle II detector. PhD thesis, KIT. https://ekp-invenio.physik.uni-karlsruhe.de/record/48882/files/EKP-2017-00009.pdf
  5. 5.
    Alexopoulos T, Bachtis M, Gazis E, Tsipolitis G (2008) Implementation of the legendre transform for track segment reconstruction in drift tube chambers. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 592(3):456–462. https://www.sciencedirect.com/science/article/pii/S0168900208005780,  https://doi.org/10.1016/j.nima.2008.04.038ADSCrossRefGoogle Scholar
  6. 6.
    Hough PVC (1962) Method and means for recognizing complex patterns. Patent. http://www.google.com/patents/US3069654
  7. 7.
    Frost O (2013) A local tracking algorithm for the central drift chamber of Belle II. Master’s thesis, KIT. http://ekp-invenio.physik.uni-karlsruhe.de/record/48172/files/iekp-ka2013-6.pdf
  8. 8.
    Toffoli T, Margolus N (1987) Cellular automata machines: a new environment for modeling. MIT Press. https://dl.acm.org/citation.cfm?id=22919
  9. 9.
    Abt I, Emeliyanov D, Kisel I, Masciocchi S (2002) CATS: a cellular automaton for tracking in silicon for the HERA-B vertex detector. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 489(1–3):389–405. http://linkinghub.elsevier.com/retrieve/pii/S0168900202007908,  https://doi.org/10.1016/S0168-9002(02)00790-8ADSCrossRefGoogle Scholar
  10. 10.
    Kovalenko V (1997) Cellular automaton and elastic net for event reconstruction in the NEMO-2 experiment. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 389(1–2):169–172. http://linkinghub.elsevier.com/retrieve/pii/S0168900297000806,  https://doi.org/10.1016/S0168-9002(97)00080-6ADSCrossRefGoogle Scholar
  11. 11.
    Lettenbichler J (2016) Real-time pattern recognition in the central tracking detector of the Belle II experiment. PhD thesis, Technische Universität Wien. http://www.ub.tuwien.ac.at
  12. 12.
    Wagner J (2017) Track finding with the silicon strip detector of the Belle II experiment. Master’s thesis, KIT. https://ekp-invenio.physik.uni-karlsruhe.de/record/48930/files/EKP-2017-00057.pdf
  13. 13.
    Brown DN, Charles EA, Roberts DA (2000) The BaBar track fitting algorithm. In: Proceedings of computing in high energy physics conference, PadovaGoogle Scholar
  14. 14.
    Avery P (1992) Applied fitting theory: IV formulas for track fitting. https://www.phys.ufl.edu/~avery/fitting/fitting4.pdf
  15. 15.
    Sorenson HW (1970) Least-squares estimation: from Gauss to Kalman. IEEE Spectr 7(7):63–68. http://ieeexplore.ieee.org/document/5213471/,  https://doi.org/10.1109/MSPEC.1970.5213471CrossRefGoogle Scholar
  16. 16.
    Blobel V, Lohrmann E (1998) Statistische und numerische Methoden der Datenanalyse. Teubner Studienbücher Physik. Vieweg+Teubner Verlag, Wiesbaden. http://link.springer.com/10.1007/978-3-663-05690-4,  https://doi.org/10.1007/978-3-663-05690-4CrossRefGoogle Scholar
  17. 17.
    Frühwirth R (1987) Application of Kalman filtering to track and vertex fitting. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 262(2–3):444–450. http://linkinghub.elsevier.com/retrieve/pii/0168900287908874,  https://doi.org/10.1016/0168-9002(87)90887-4ADSCrossRefGoogle Scholar
  18. 18.
  19. 19.
    Gelb A (1974) Applied optimal estimation. MIT PressGoogle Scholar
  20. 20.
    Aimonen P (2011) Basic concept of Kalman filtering. https://commons.wikimedia.org/wiki/File:Basic_concept_of_Kalman_filtering.svg
  21. 21.
    Frühwirth R, Strandlie A (1999) Track fitting with ambiguities and noise: a study of elastic tracking and nonlinear filters. Comput Phys Commun 120(2–3):197–214. http://linkinghub.elsevier.com/retrieve/pii/S0010465599002313,  https://doi.org/10.1016/S0010-4655(99)00231-3ADSCrossRefGoogle Scholar
  22. 22.
    Rauch J, Schlüter T (2015) GENFIT—a generic track-fitting toolkit. J Phys Conf Ser 608:012042. arXiv:1410.3698, http://arxiv.org/abs/1410.3698,  https://doi.org/10.1088/1742-6596/608/1/012042Google Scholar
  23. 23.
    Lund E, Bugge L, Gavrilenko I, Strandlie A (2009) Track parameter propagation through the application of a new adaptive Runge-Kutta-Nyström method in the ATLAS experiment. J Instrum 4(04):P04001. http://stacks.iop.org/1748-0221/4/i=04/a=P04001?key=crossref.4db573cdf47b35d9171ab976705899ed,  https://doi.org/10.1088/1748-0221/4/04/P04001ADSGoogle Scholar
  24. 24.
    Bishop CM (2006) Pattern recognition and machine learning. Springer, CambridgezbMATHGoogle Scholar
  25. 25.
    Keck T (2017) FastBDT: a speed-optimized multivariate classification algorithm for the Belle II experiment. Comput Softw Big Sci 1(1):2. arXiv:1609.06119, http://arxiv.org/abs/1609.06119,  https://doi.org/10.1007/s41781-017-0002-8
  26. 26.
  27. 27.
    Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26. http://projecteuclid.org/euclid.aos/1176344552,  https://doi.org/10.1214/aos/1176344552MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ETPKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations