Genetic Algorithm (GA) is an artificial intelligence procedure which efficiently searches a large space of possible solutions to find the best possible solution for the given problem. This paper is focused on the GA and its application in the problem of finding optimal parameters for map registration. It has been shown that genetic algorithms can solve very complex problems, such as geometric transformation of raster datasets. After determining the appropriate fitness function and tuning the GA parameters, the optimal transformation parameters were obtained. Finally, the historical topographic map was efficiently georeferenced to the state plane coordinate grid, i.e., the Bosnian-Herzegovinian state coordinate system.


Genetic algorithm Map registration Transformation 


  1. 1.
    Nguyen, T.: Optimal ground control points for geometric correction using genetic algorithm with global accuracy. Eur. J. Remote Sens. 48(1), 101–120 (2015).
  2. 2.
    Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley, Hoboken (2004)Google Scholar
  3. 3.
    Srinuandee, P., Satirapod, C.: Use of genetic algorithm and sliding windows for optimising ambiguity fixing rate in GPS kinematic positioning mode. Surv. Rev. 47(340), 1–6 (2015).
  4. 4.
    Shnaidman, A., Shoshani, U., Doytsher, Y.: Genetic algorithms: a stochastic approach for improving the current cadastre accuracies. Surv. Rev. 44, 325, 102–110 (2012).
  5. 5.
    Baselga, S.: Global optimization solution of robust estimation. J. Surv. Eng. 133(3), 123–128 (2007).
  6. 6.
    Coulot, D., Pollet, A., Collilieux, X., Berio, P.: Global optimization of core station networks for space geodesy: application to the referencing of the SLR EOP with respect to ITRF. J. Geod. 84(1), 31–50. (2009)
  7. 7.
    Tuno, N., Avdagić, Z., Ponjavić, M.: Georeferencing a raster data using genetic algorithm. In: 10th International Multidisciplinary Scientific GeoConference SGEM2011 Conference Proceedings, vol. 1, pp. 1003–1010 (2010)Google Scholar
  8. 8.
    Tuno, N., Mulahusić, A., Kozličić, M., Orešković, Z.: Border reconstruction of Bosnia and Herzegovina’s access to the Adriatic Sea at Sutorina by consulting old maps. Kartografija i geoinformacije 16, 26–55 (2011)Google Scholar
  9. 9.
    Kolingerová, I.: Genetic optimization of the triangulation weight. In: Proceedings of the 2nd International conference Computer Graphics and Artificial Intelligence, Limoges, pp. 23–34 (1998)Google Scholar
  10. 10.
    Gen, M., Cheng, R.: Genetic Algorithms & Engineering Design. Wiley, New York (1997)Google Scholar
  11. 11.
    Kramer, O.: Genetic Algorithm Essentials, Springer (2017)Google Scholar
  12. 12.
    Tuno, N., Topoljak, J., Mulahusić, A., Kozličić, M.: Cartographic depiction of religious buildings and cemeteries on cadastral maps created during the first cadastral survey of Bosnia and Herzegovina. Geoadria 20(2), 175–214 (2015)
  13. 13.
    Topoljak, J., Lapaine, M., Tuno, N., Mulahusić, A.: Analiza vanjskih elemenata sadržaja katastarskih planova stare izmjere Bosne i Hercegovine. Geodetski list 71 (94) (1), 55–76 (2017)Google Scholar
  14. 14.
    Tuno, N., Mulahusić, A., Kogoj, D.: Improving the positional accuracy of digital cadastral maps through optimal geometric transformation. J. Surv. Eng. 143(3), 1–12 (2017).
  15. 15.
    Tuno, N.: Polinomska transformacija u georeferenciranju: Polynomial transformation in the georeferencing. Geodetski glasnik 39, 38–46 (2007)Google Scholar
  16. 16.
    Borisov, M., Petrović, V.M., Vulić, M.: Vizuelizacija 3D modela geopodataka i njihova primjena : Visualisation of the 3D geodata models and their application. Geodetski glasnik 45, 29–45 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nedim Tuno
    • 1
    Email author
  • Admir Mulahusić
    • 1
  • Jusuf Topoljak
    • 1
  • Seat-Yakup Kurtović
    • 1
  1. 1.Faculty of Civil Engineering, Department of Geodesy and GeoinformaticsUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations