Subjective and Objective QoE Measurement for H.265/HEVC Video Streaming over LTE

  • Jasmina Baraković HusićEmail author
  • Sabina Baraković
  • Irma Osmanović
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 83)


Mobile video traffic is the fastest growing segment of mobile data driven by proliferation of devices with larger screens and higher resolution, as well as increased network performance achieved through long term evolution (LTE) deployments. Emerging video formats and applications, such as H.265/high efficiency video coding (HEVC) will increase the video traffic consumption while improving the user quality of experience (QoE). Although QoE is affected by many influence factors (IFs), this paper focuses on media-related system IFs and their impact on subjective and objective QoE metrics for H.265/HEVC video streaming. The aim is to examine the impact of media-related system IFs on QoE for video streaming and compare the results of subjective and objective QoE measurements. Results obtained from experimental study are used to analyze the relationship between subjective and objective QoE metrics for H.265/HEVC video streaming.


  1. 1.
    Golic, D., Barakovic Husic, J., Barakovic, S.: Impact of mobile ad-hoc network parameters on quality of experience for video streaming. In: Proceedings of the 17th International Symposium INFOTEH-JAHORINA 2018, Bosnia and Herzegovina (2018)Google Scholar
  2. 2.
    Cerwall, P., et al.: Ericsson Mobility Report (2018)Google Scholar
  3. 3.
    Begluk, T., Barakovic Husic, J., Barakovic, S.: Machine-learning-based QoE prediction for video streaming over LTE network. In: Proceedings of the 17th International Symposium INFOTEH-JAHORINA 2018, Bosnia and Herzegovina (2018)Google Scholar
  4. 4.
    Osmanovic, I., Barakovic Husic, J., Barakovic, S.: Impact of media-related SIFs on QoE for H.265/HEVC video streaming. J. Commun. Softw. Syst. 14(2), 157–170 (2018)Google Scholar
  5. 5.
    Baraković, S., Skorin-Kapov, L.: Survey and challenges of QoE management issues in wireless networks. J. Comput. Netw. Commun., Article ID 165146 (2013)Google Scholar
  6. 6.
    Le Callet, P., Möller, S., Perkis, A.: Qualinet White Paper on Definitions of Quality of Experience. European Network on Quality of Experience in Multimedia Systems and Services (COST Action IC 1003) Version 1.2, Lausanne, Switzerland (2013)Google Scholar
  7. 7.
    Opozda, S., Sochan, A.: The survey of subjective and objective methods for quality assessment of 2D and 3D images. Theor. Appl. Inform. 26, 39–67 (2014)Google Scholar
  8. 8.
    Nightingale, J., Wang, Q., Grecos, C., Goma, S.: The impact of network impairment on quality of experience (QoE) in H.265/HEVC video streaming. IEEE Trans. Consum. Electron. 60(2), 242–250 (2014)CrossRefGoogle Scholar
  9. 9.
    Aqil, A., Atya, A.O.F., Krishnamurthy, S.V., Papageorgiou, G.: Streaming lower quality video over LTE: how much energy can you save? In: Proceedings of the IEEE 23rd International Conference on Network Protocols (ICNP), San Francisco, CA, USA, 10–13 November 2015Google Scholar
  10. 10.
    Khan, A., Sun, L., Jammeh, E., Ifeachor, E.: Quality of experience-driven adaptation scheme for video applications over wireless networks. IET Commun. 4(11), 1337–1347 (2010)CrossRefGoogle Scholar
  11. 11.
    Khan, A., Sun, L., Ifeachor, E., Fajardo, J.O., Liberal, F., Koumaras, H.: Video quality prediction models based on video content dynamics for H. 264 video over UMTS networks. Int. J. Digit. Multimed. Broadcast. 2010, 17 (2010)Google Scholar
  12. 12.
    Vakili, A., Grégorie, J.C.: QoE management for video conferencing applications. Comput. Netw. 57, 1726–1738 (2013)CrossRefGoogle Scholar
  13. 13.
    Alberti, C., et al.: Automated QoE evaluation of dynamic adaptive streaming over HTTP. In: Proceedings of the 5th International Workshop on Quality of Multimedia Experience (QoMEX), Klagenfurt am Wörthersee, pp. 58–63, Austria, 3–5 July 2013Google Scholar
  14. 14.
    Hammerschmidt, D., Wöllner, C.: The influence of image compression rate. In: Proceedings of International Conference on the Multimodal Experience of Music (ICMEM), Sheffield, UK, 23–25 March 2015Google Scholar
  15. 15.
    Vranješ, D., Žagar, D., Nemčić, O.: Comparison of objective quality assessment methods for scalable video coding. In: Proceedings of the 54th International Symposium ELMAR-2012, pp. 19–22, Zadar, Croatia, 12–14 September 2012Google Scholar
  16. 16.
    Silvar, I., Sužnjević, M., Skorin-Kapov, L.: The impact of video encoding parameters and game type on QoE for cloud gaming: a case study using the steam platform. In: Proceedings of the 7th International Workshop on Quality of Multimedia Experience (QoMEX), 2015, pp. 1–6, Pylos-Nestoras, Greece, 26–29 May 2015Google Scholar
  17. 17.
    Joskowicz, J., Ardao, J.: A general parametric model for perceptual video quality estimation. In: Proceedings of the International Workshop Technical Committee on Communications Quality and Reliability (CQR), 2010, pp. 1–6, Vancouver, BC, Canada, 8–10 June 2010Google Scholar
  18. 18.
    Joskowicz, J., Ardao, J.: Combining the effects of frame rate, bit rate, display size and video content in a parametric video quality model. In: Proceedings of the 6th Latin America Networking Conference, 2011, pp. 4–11, Quito, Ecuador, 12–13 October 2011Google Scholar
  19. 19.
    Joskowicz, J., Ardao, J.C.L., Sotelo, R.: Quantitative modeling of the impact of video content in the ITU-T G. 1070 video quality estimation function. Informática Na Educ.: Teor. Prática 14(2) (2011)Google Scholar
  20. 20.
    Ohm, J., Sullivan, G.J., Schwarz, H., Tan, T.K., Weigand, T.: Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22, 1669–1684 (2012)CrossRefGoogle Scholar
  21. 21.
    Řeřábek, M., Hanhart, P., Korshunov, P., Ebrahimi, T.: Quality evaluation of HEVC and VP9 video compression in real-time applications. In: Proceedings of the 7th International Workshop on Quality of Multimedia Experience (QoMEX), 2015, Pylos-Nestoras, Greece, pp. 1–6, 26–29 May 2015Google Scholar
  22. 22.
    Uhrina, M., Frnda, J., Sevcik, L., Vaculik, M.: Impact of H. 264/AVC and H. 265/HEVC compression standards on the video quality for 4K resolution. Adv. Electr. Electron. Eng. 12, 368–376 (2014)Google Scholar
  23. 23.
    McDonagh, P., Vallati, C., Pande, A., Mohapatra, P., Perry, P., Mingozzi, E.: Quality-oriented scalable video delivery using H. 264 SVC on an LTE network. In: Proceedings of the 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), 2011, Brest, France, 3–7 October 2011Google Scholar
  24. 24.
    Seeling, P., Reisslein, M.: Video traffic characteristics of modern encoding standards: H. 264/AVC with SVC and MVC extensions and H. 265/HEVC. Sci. World J. 2014, 16 (2014)CrossRefGoogle Scholar
  25. 25.
    Nasiri, R.M., Wang, J., Rehman, A., Wang, S., Wang, Z.: Perceptual quality assessment of high frame rate video. In: Proceedings of the 17th International Workshop on Multimedia Signal Processing (MMSP), 2015, Xiamen, China, pp. 1–6, 19–21 October 2015Google Scholar
  26. 26.
    Zinner, T., Hohlfeld, O., Abboud, O., Hossfeld, T.: Impact of frame rate and resolution on objective QoE metrics. In: Proceedings of the 2nd International Workshop on Quality of Multimedia Experience (QoMEX), 2010, Trondheim, Norway, pp. 29–34, 21–23 July 2010Google Scholar
  27. 27.
    Songi, W., Tjondronegoro, W.D.: Acceptability-based QoE models for mobile video. IEEE Trans. Multimedia 16, 738–750 (2014)CrossRefGoogle Scholar
  28. 28.
    Al-Nuaim, H., Nouf, A.: A user perceived quality assessment of lossy compressed images. Int. J. Comput. Graph. 2, 23–36 (2011)Google Scholar
  29. 29.
    Grois, D., Marpe, D., Mulayoff, A., Itzhaky, B., Hadar, O.: Performance comparison of h. 265/mpeg-hevc, vp9, and h. 264/mpeg-avc encoders. In: Proceedings of Picture Coding Symposium (PCS), San Jose, CA, USA (2013)Google Scholar
  30. 30.
    Yang, W., et al.: Perceptual quality of video with periodic frame rate and quantization variation-subjective studies and analytical modeling. In: IEEE International Workshop on Multimedia Signal Processing, Xiamen (2014)Google Scholar
  31. 31.
    Shahab, D.U., Bulterman, D.: Synchronization techniques in distributed multimedia presentation. In: The Fourth International Conferences on Advances in Multimedia (MMEDIA), pp. 1–9 (2012)Google Scholar
  32. 32.
    Murray, N., et al.: Subjective evaluation of olfactory and visual media synchronization. In: Proceedings of the 4th ACM Multimedia Systems Conference, pp. 162–171 (2013)Google Scholar
  33. 33.
    FFmpeg development team. ffmpeg Documentation (2019, March).
  34. 34.
  35. 35.
    Shahab, S.N., Abdulkafi, A.A., Zainun, A.R.: Assessment of area energy efficiency of LTE macro base stations in different environments. J. Telecommun. Inf. Technol., 59 (2015)Google Scholar
  36. 36.
    Sauter, M.: Long term evolution. In: From GSM to LTE: An Introduction to Mobile Networks and Mobile Broadband. Wiley, West Sussex, UK (2010)Google Scholar
  37. 37.
    Baraković, S., Skorin-Kapov, L.: Multidimensional Modelling of quality of experience for mobile web browsing. Comput. Hum. Behav. 50, 314–332 (2015)CrossRefGoogle Scholar
  38. 38.
    Streijl, R.C.: Mean opinion score (MOS) revisited: methods and applications, limitations and alternatives. Multimedia Syst. 22, 213–227 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jasmina Baraković Husić
    • 1
    Email author
  • Sabina Baraković
    • 2
  • Irma Osmanović
    • 3
  1. 1.Faculty of Electrical EngineeringUniversity of SarajevoSarajevoBosnia and Herzegovina
  2. 2.American University in Bosnia and HerzegovinaSarajevoBosnia and Herzegovina
  3. 3.Systech, d.o.o. SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations