Advertisement

Soil Moisture Retrieval Using Microwave Remote Sensing: Review of Techniques and Applications

  • Hibatoullah LaachrateEmail author
  • Abdelhamid Fadil
  • Abdessamad Ghafiri
Chapter
  • 283 Downloads
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Soil moisture is an important parameter among the fifty “Essential Climate Variables” according to Global Climate Observing System (GCOS). It allows to perform several applications in different fields, especially hydrological, meteorological and agricultural ones. There are several methods for measuring this parameter in two main categories: in-situ methods and remote sensing. In this sense, two well-known satellites are invested, namely Soil Moisture and Ocean Salinity (SMOS) from European Space Agency (ESA) launched in 2009 and Soil Moisture Active Passive (SMAP) from National Aeronautics and Space Administration (NASA) launched in 2015. This work will be dedicated to the state of the art of soil moisture downscaling and applications across various regions of the world, including Canada, USA and Spain to take advantage of these studies for a future effective exploitation of soil moisture mapping in a Moroccan context.

Keywords

Soil moisture Earth observation Satellite Remote sensing Microwave sensing SMOS SMAP ESA NASA Soil moisture applications Downscaling 

Notes

Acknowledgements

Hibatoullah Laachrate is supported by the Moroccan institute: National Center for Scientific and Technical Research (Centre National pour la Recherche Scientifique et Technique: CNRST) as part of the Research Excellence Scholarship programme.

References

  1. 1.
    Seneviratne SI, Corti T, Davin EL et al (2010) Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci Rev 99:125–161.  https://doi.org/10.1016/j.earscirev.2010.02.004CrossRefGoogle Scholar
  2. 2.
    Carter MR (1993) Soil sampling and methods of analysis. CRC PressGoogle Scholar
  3. 3.
    Lal R (2006) Encyclopedia of soil science. CRC PressGoogle Scholar
  4. 4.
    Labrecque K (2011) Cartographie numérique de l’humidité de surface des sols à l’échelle de la parcelle agricole à l’aide de la télédétection et de la prospection électrique. Université du Québec, Institut national de la recherche scientifiqueGoogle Scholar
  5. 5.
    Petropoulos GP, Ireland G, Barrett B (2015) Surface soil moisture retrievals from remote sensing: current status, products and future trends. Phys Chem Earth Parts ABC 83–84:36–56.  https://doi.org/10.1016/j.pce.2015.02.009CrossRefGoogle Scholar
  6. 6.
    Fascetti F, Pierdicca N, Pulvirenti L et al (2016) A comparison of ASCAT and SMOS soil moisture retrievals over Europe and Northern Africa from 2010 to 2013. Adv Valid Appl Remote Sensed Soil Moisture—Part 1 45, Part B:135–142.  https://doi.org/10.1016/j.jag.2015.09.008CrossRefGoogle Scholar
  7. 7.
    Haider SS, Said S, Kothyari UC, Arora MK (2004) Soil moisture estimation using ERS 2 SAR data: a case study in the Solani River catchment/Estimation de l’humidité du sol grâce à des données ERS-2 SAR: étude de cas dans le bassin de la rivière Solani. Hydrol Sci J 49:null-334.  https://doi.org/10.1623/hysj.49.2.323.34832
  8. 8.
    Zanolin A, de Fouquet C, Granier J et al (2007) Geostatistical simulation of the spatial variability of an irrigated maize farm plot. Comptes Rendus Geosci 339:430–440.  https://doi.org/10.1016/j.crte.2007.04.002CrossRefGoogle Scholar
  9. 9.
    Klute A, Gardner WH (1986) Water content. Methods of soil analysis: part 1—physical and mineralogical methods.  https://doi.org/10.2136/sssabookser5.1.2ed.c21Google Scholar
  10. 10.
    Robinson DA, Jones SB, Wraith JM et al (2003) A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J 2:444–475.  https://doi.org/10.2136/vzj2003.4440CrossRefGoogle Scholar
  11. 11.
    Charlesworth P (2005) Irrigation insight no 1 soil water monitoring an information package, 2nd ednGoogle Scholar
  12. 12.
    Koch F, Schlenz F, Prasch M et al (2016) Soil Moisture retrieval based on GPS signal strength attenuation. Water 8:276.  https://doi.org/10.3390/w8070276CrossRefGoogle Scholar
  13. 13.
    Campbell JB, Wynne RH (2011) Introduction to remote sensing, 5th edn. Guilford PressGoogle Scholar
  14. 14.
    Boisvert JB, Crevier Y, Pultz TJ (1996) Estimation régionale de l’humidité du sol par télédétection. Can J Soil Sci 76:325–334CrossRefGoogle Scholar
  15. 15.
    Ochsner TE, Cosh MH, Cuenca RH et al (2013) State of the art in large-scale soil moisture monitoring. Soil Sci Soc Am J 77:1888–1919.  https://doi.org/10.2136/sssaj2013.03.0093CrossRefGoogle Scholar
  16. 16.
    Schmugge T, Gloersen P, Wilhbit T (1974) Remote sensing of soil moisture with microwave radiometers. http://adsabs.harvard.edu/abs/1974JGR….79..317S. Accessed 7 Dec 2017CrossRefGoogle Scholar
  17. 17.
    Dickey FM, King C, Holtzman JC, Moore RK (1974) Moisture dependency of radar backscatter from irrigated and non-irrigated fields at 400 MHz and 13.3 GHz. IEEE Trans Geosci Electron 12:19–22.  https://doi.org/10.1109/TGE.1974.294326CrossRefGoogle Scholar
  18. 18.
    Chang ATC, Atwater SG, Salomonson VV et al (1980) L-band radar sensing of soil moisture. IEEE Trans Geosci Remote Sens GE-18:303–310.  https://doi.org/10.1109/tgrs.1980.350306CrossRefGoogle Scholar
  19. 19.
    Ulaby FT, Dobson MC, Brunfeldt DR (1983) Improvement of moisture estimation accuracy of vegetation-covered soil by combined active/passive microwave remote sensing. IEEE Trans Geosci Remote Sens GE-21:300–307.  https://doi.org/10.1109/tgrs.1983.350557CrossRefGoogle Scholar
  20. 20.
    Bernier B et al (1981) Application du concept d’inertie thermique et des données du satellite HCMM dans l’est du Canada. Can J Remote Sens 7:108–124.  https://doi.org/10.1080/07038992.1981.10855013CrossRefGoogle Scholar
  21. 21.
    Bernier M, Fortin J (1989) Suivi de la couverture de neige au moyen d’un radar à ouverture synthètique. In: 12th Canadian symposium on remote sensing geoscience and remote sensing symposium pp 1251–1255Google Scholar
  22. 22.
    Blyth K (1993) The use of microwave remote sensing to improve spatial parameterization of hydrological models. J Hydrol 152:103–129.  https://doi.org/10.1016/0022-1694(93)90142-VCrossRefGoogle Scholar
  23. 23.
    Hoeben R, Troch PA (2000) Assimilation of active microwave observation data for soil moisture profile estimation. Water Resour Res 36:2805–2819.  https://doi.org/10.1029/2000WR900100CrossRefGoogle Scholar
  24. 24.
    Dabas A, Flamant C (2002) Les instruments de télédétection au solGoogle Scholar
  25. 25.
    Wang L, Qu JJ (2009) Satellite remote sensing applications for surface soil moisture monitoring: a review. Front Earth Sci China 3:237–247.  https://doi.org/10.1007/s11707-009-0023-7CrossRefGoogle Scholar
  26. 26.
    Das K, Paul PK (2015) Present status of soil moisture estimation by microwave remote sensing. Cogent Geosci 1.  https://doi.org/10.1080/23312041.2015.1084669
  27. 27.
    Lakhankar T, Krakauer N, Khanbilvardi R (2009) Applications of microwave remote sensing of soil moisture for agricultural applicationsGoogle Scholar
  28. 28.
    CESBIO (2017) Centre d’Etudes Spatiales de la BIOsphère (CESBIO): Page d’accueil du laboratoire CESBIO. http://www.cesbio.ups-tlse.fr/. Accessed 15 Jul 2017
  29. 29.
    CESBIO SMOS blog (2017) SMOS blog. http://www.cesbio.ups-tlse.fr/SMOS_blog/. Accessed 11 Dec 2017
  30. 30.
    CNES (2017) SMOS. https://smos.cnes.fr/fr/SMOS/Fr/index.htm. Accessed 11 Aug 2017
  31. 31.
    CATDS (2017) Centre Aval de Traitement des Données SMOS (CATDS). In: Cent. Aval Trait. Données SMOS CATDS. https://www.catds.fr/. Accessed 13 Aug 2017
  32. 32.
    CESBIO (2010) Algorithm Theoretical Basis Document (ATBD). https://earth.esa.int/documents/10174/1854519/SMOS_L2_SM_ATBD. Accessed 12 Aug 2017
  33. 33.
    Jet Propulsion Laboratory (2014) Tutorial: Introduction to SMAP [online]. Available from: http://smap.jpl.nasa.gov/system/internal_resources/details/original/306_smap_workshop_website_v6.pdf
  34. 34.
    JPL Nasa (2015) NASA Soil Moisture Radar Ends Operations, Mission Science Continues. https://www.jpl.nasa.gov/news/news.php?feature=4710
  35. 35.
    SMAP JPL Nasa (2017) SMAP data products. https://smap.jpl.nasa.gov/data/
  36. 36.
    O’Neill P, Chan S, Njoku E (2012) Algorithm theoretical basis document (ATBD) SMAP level 2 & 3 soil moisture (Passive) (L2_SM_P, L3_SM_P)Google Scholar
  37. 37.
  38. 38.
    Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping studies in software engineering. In: EASE. pp 68–77Google Scholar
  39. 39.
    Articles in Press. http://help.sciencedirect.com/Content/arts_press.htm. Accessed 8 Mar 2018
  40. 40.
    Merlin O, Malbéteau Y, Notfi Y et al (2015) Performance metrics for soil moisture downscaling methods: application to DISPATCH data in central Morocco. Remote Sens 7:3783–3807.  https://doi.org/10.3390/rs70403783CrossRefGoogle Scholar
  41. 41.
    Rüdiger C, Dharssi I, McCaskill M et al (2015) High-resolution soil moisture monitoring across Australia: opportunities for farming applications. Hotel Grand Chancellor 1 Davey Street Hobart; Australia, pp 1002–1009Google Scholar
  42. 42.
    Djamai N, Magagi R, Goita K et al (2015) Disaggregation of SMOS soil moisture over the Canadian Prairies. Remote Sens Environ 170:255–268.  https://doi.org/10.1016/j.rse.2015.09.013CrossRefGoogle Scholar
  43. 43.
    Piles M, Sánchez N (2016) Chapter 6—spatial downscaling of passive microwave data with visible-to-infrared information for high-resolution soil moisture mapping A2—Srivastava, Prashant K. In: Petropoulos GP, Kerr YH (eds) Satellite soil moisture retrieval. Elsevier, pp 109–132Google Scholar
  44. 44.
    Molero B, Merlin O, Malbéteau Y et al (2016) SMOS disaggregated soil moisture product at 1 km resolution: Processor overview and first validation results. Spec Issue ESAs Soil Moisture Ocean Salin Mission—Achiev Appl 180:361–376.  https://doi.org/10.1016/j.rse.2016.02.045CrossRefGoogle Scholar
  45. 45.
    Piles M, Petropoulos GP, Sánchez N et al (2016) Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of SMOS and MSG SEVIRI spaceborne observations. Spec Issue ESAs Soil Moisture Ocean Salin Mission—Achiev Appl 180:403–417.  https://doi.org/10.1016/j.rse.2016.02.048CrossRefGoogle Scholar
  46. 46.
    Djamai N, Magagi R, Goïta K et al (2016) A combination of DISPATCH downscaling algorithm with CLASS land surface scheme for soil moisture estimation at fine scale during cloudy days. Remote Sens Environ 184:1–14.  https://doi.org/10.1016/j.rse.2016.06.010CrossRefGoogle Scholar
  47. 47.
    Jiang H, Shen H (2016) SMOS soil moisture downscaling based on back propagation neural network with MODIS LST and EVI. IEEE, pp 1659–1662Google Scholar
  48. 48.
    Lakshmi V, Li H (2016) Spatial downscaling of SMAP passive microwave radiometer soil moisture using vegetation index and surface temperature. IEEE, pp 1630–1632Google Scholar
  49. 49.
    Pablos M, Piles M, Sánchez N et al (2016) Impact of day/night time land surface temperature in soil moisture disaggregation algorithms. Eur J Remote Sens 49:899–916.  https://doi.org/10.5721/EuJRS20164947CrossRefGoogle Scholar
  50. 50.
    Senanayake IP, Yeo IY, Tangdamrongsub N et al (2017) Disaggregation of SMAP radiometric soil moisture measurements at catchment scale using MODIS land surface temperature data. CEUR-WS, Sydney; Australia, pp 19–24Google Scholar
  51. 51.
    Chen N, He Y, Zhang X (2017) NIR-Red spectra-based disaggregation of SMAP soil moisture to 250 m resolution based on OzNet in Southeastern Australia. Remote Sens 9:51.  https://doi.org/10.3390/rs9010051CrossRefGoogle Scholar
  52. 52.
    Knipper KR, Hogue TS, Franz KJ, Scott RL (2017) Downscaling SMAP and SMOS soil moisture with moderate-resolution imaging spectroradiometer visible and infrared products over southern Arizona. J Appl Remote Sens 11:026021.  https://doi.org/10.1117/1.JRS.11.026021CrossRefGoogle Scholar
  53. 53.
    Jiang H, Shen H, Li H et al (2017) Evaluation of multiple downscaled microwave soil moisture products over the central Tibetan Plateau. Remote Sens 9:402.  https://doi.org/10.3390/rs9050402CrossRefGoogle Scholar
  54. 54.
    Colliander A, Fisher JB, Halverson G et al (2017) Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15. IEEE Geosci Remote Sens Lett 14:2107–2111.  https://doi.org/10.1109/LGRS.2017.2753203CrossRefGoogle Scholar
  55. 55.
    Pablos M, Martínez-Fernández J, Sánchez N, González-Zamora Á (2017) Temporal and spatial comparison of agricultural drought indices from moderate resolution satellite soil moisture data over Northwest Spain. Remote Sens 9:1168.  https://doi.org/10.3390/rs9111168CrossRefGoogle Scholar
  56. 56.
    Eweys OA, Escorihuela MJ, Villar JM et al (2017) Disaggregation of SMOS soil moisture to 100 m resolution using MODIS optical/thermal and sentinel-1 radar data: evaluation over a bare soil site in Morocco. Remote Sens 9:1155.  https://doi.org/10.3390/rs9111155CrossRefGoogle Scholar
  57. 57.
    Tomer SK, Al Bitar A, Sekhar M et al (2016) MAPSM: a spatio-temporal algorithm for merging soil moisture from active and passive microwave remote sensing. Remote Sens 8:990.  https://doi.org/10.3390/rs8120990CrossRefGoogle Scholar
  58. 58.
    Sánchez JCH, Monsivais-Huertero A, Escalona JCJ (2016) Validation of aggregation/disaggregation algorithm to SMAP radar and radiometer over a tropical forest. International Astronautical Federation, IAF, Guadalajara, Mexico Google Scholar
  59. 59.
    Montzka C, Jagdhuber T, Horn R et al (2016) Investigation of SMAP fusion algorithms with airborne active and passive L-band microwave remote sensing. IEEE Trans Geosci Remote Sens 54:3878–3889.  https://doi.org/10.1109/TGRS.2016.2529659CrossRefGoogle Scholar
  60. 60.
    Das NN, Entekhabi D, Kim S et al (2016) Combining SMAP and sentinel data for high-resolution soil moisture product. IEEE, pp 129–131Google Scholar
  61. 61.
    Akbar R, Chan S, Das N et al (2016) A multi-objective optimization approach to combined radar-radiometer soil moisture estimation. IEEE, pp 3074–3077Google Scholar
  62. 62.
    Wu X, Walker JP, Rudiger C et al (2017) Intercomparison of alternate soil moisture downscaling algorithms using active-passive microwave observations. IEEE Geosci Remote Sens Lett 14:179–183.  https://doi.org/10.1109/LGRS.2016.2633521CrossRefGoogle Scholar
  63. 63.
    Lievens H, Reichle RH, Liu Q et al (2017) Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates. Geophys Res Lett 44:6145–6153.  https://doi.org/10.1002/2017GL073904CrossRefGoogle Scholar
  64. 64.
    Wu X, Walker JP, Rudiger C et al (2017) Medium-resolution soil moisture retrieval using the bayesian merging method. IEEE Trans Geosci Remote Sens 55:6482–6493.  https://doi.org/10.1109/TGRS.2017.2728808CrossRefGoogle Scholar
  65. 65.
    Kornelsen KC, Cosh MH, Coulibaly P (2015) Potential of bias correction for downscaling passive microwave and soil moisture data: Bias Correction Downscaling. J Geophys Res Atmospheres 120:6460–6479.  https://doi.org/10.1002/2015JD023550CrossRefGoogle Scholar
  66. 66.
    Verhoest NEC, van den Berg MJ, Martens B et al (2015) Copula-based downscaling of coarse-scale soil moisture observations with implicit bias correction. IEEE Trans Geosci Remote Sens 53:3507–3521.  https://doi.org/10.1109/TGRS.2014.2378913CrossRefGoogle Scholar
  67. 67.
    Kornelsen KC, Davison B, Coulibaly P (2016) Application of SMOS soil moisture and brightness temperature at high resolution with a bias correction operator. IEEE J Sel Top Appl Earth Obs Remote Sens 9:1590–1605.  https://doi.org/10.1109/JSTARS.2015.2474266CrossRefGoogle Scholar
  68. 68.
    Gabriel G, Virginia V (2017) Downscaling SMAP soil moisture images with wavelets transform and PCA method. IEEE, pp 1–4Google Scholar
  69. 69.
    Scholze M, Kaminski T, Knorr W et al (2016) Simultaneous assimilation of SMOS soil moisture and atmospheric CO2 in-situ observations to constrain the global terrestrial carbon cycle. Remote Sens Environ 180:334–345.  https://doi.org/10.1016/j.rse.2016.02.058CrossRefGoogle Scholar
  70. 70.
    Jones LA, Kimball JS, Madani N et al (2016) The SMAP level 4 carbon product for monitoring terrestrial ecosystem-atmosphere CO2 exchange. IEEE, pp 139–142Google Scholar
  71. 71.
    Jones LA, Kimball JS, Reichle RH et al (2017) The SMAP level 4 carbon product for monitoring ecosystem land-atmosphere CO2 exchange. IEEE Trans Geosci Remote Sens 55:6517–6532.  https://doi.org/10.1109/TGRS.2017.2729343CrossRefGoogle Scholar
  72. 72.
    Golding OBE B numerical weather prediction NWP. In: R Meteorol Soc https://www.rmets.org/weather-and-climate/weather/numerical-weather-prediction-nwp
  73. 73.
    Zhan X, Zheng W, Fang L et al (2016) A preliminary assessment of the impact of SMAP Soil Moisture on numerical weather Forecasts from GFS and NUWRF models. IEEE, pp 5229–5232Google Scholar
  74. 74.
    Frankenstein S, Stevens M, Scott C (2015) Ingestion of simulated SMAP L3 soil moisture data into military maneuver planning. J Hydrometeorol 16:427–440.  https://doi.org/10.1175/JHM-D-14-0032.1CrossRefGoogle Scholar
  75. 75.
    Yin J, Zhan X, Zheng Y et al (2015) Enhancing model skill by assimilating SMOPS blended soil moisture product into noah land surface model. J Hydrometeorol 16:917–931.  https://doi.org/10.1175/JHM-D-14-0070.1CrossRefGoogle Scholar
  76. 76.
    Lievens H, Tomer SK, Al Bitar A et al (2015) SMOS soil moisture assimilation for improved hydrologic simulation in the murray darling basin, Australia. Remote Sens Environ 168:146–162.  https://doi.org/10.1016/j.rse.2015.06.025CrossRefGoogle Scholar
  77. 77.
    Xu X, Tolson BA, Li J et al (2015) Assimilation of SMOS soil moisture over the Great Lakes basin. Remote Sens Environ 169:163–175.  https://doi.org/10.1016/j.rse.2015.08.017CrossRefGoogle Scholar
  78. 78.
    Shellito PJ, Small EE, Cosh MH (2016) Calibration of noah soil hydraulic property parameters using surface soil moisture from SMOS and basinwide In Situ observations. J Hydrometeorol 17:2275–2292.  https://doi.org/10.1175/JHM-D-15-0153.1CrossRefGoogle Scholar
  79. 79.
    Zhuo L, Han D (2016) Misrepresentation and amendment of soil moisture in conceptual hydrological modelling. J Hydrol 535:637–651.  https://doi.org/10.1016/j.jhydrol.2016.02.033CrossRefGoogle Scholar
  80. 80.
    Zhuo L, Han D (2016) Could operational hydrological models be made compatible with satellite soil moisture observations?: Operational hydrological models compatibility issues. Hydrol Process 30:1637–1648.  https://doi.org/10.1002/hyp.10804CrossRefGoogle Scholar
  81. 81.
    Lievens H, De Lannoy GJM, Al Bitar A et al (2016) Assimilation of SMOS soil moisture and brightness temperature products into a land surface model. Spec Issue ESAs Soil Moisture Ocean Salin Mission—Achiev Appl 180:292–304.  https://doi.org/10.1016/j.rse.2015.10.033CrossRefGoogle Scholar
  82. 82.
    Leroux DJ, Pellarin T, Vischel T et al (2016) Assimilation of SMOS soil moisture into a distributed hydrological model and impacts on the water cycle variables over the Ouémé catchment in Benin. Hydrol Earth Syst Sci 20:2827–2840.  https://doi.org/10.5194/hess-20-2827-2016CrossRefGoogle Scholar
  83. 83.
    Thorstensen A, Nguyen P, Hsu K, Sorooshian S (2016) Assessment of assimilating SMOS soil moisture information into a distributed hydrologic model. European Space Agency, (Special Publication) ESA SP, Prague; Czech RepublicGoogle Scholar
  84. 84.
    Blankenship CB, Case JL, Zavodsky BT, Crosson WL (2016) Assimilation of SMOS Retrievals in the Land Information System. IEEE Trans Geosci Remote Sens 54:6320–6332.  https://doi.org/10.1109/TGRS.2016.2579604CrossRefGoogle Scholar
  85. 85.
    De Lannoy GJM, Reichle RH (2016) Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model. Hydrol Earth Syst Sci 20:4895–4911.  https://doi.org/10.5194/hess-20-4895-2016CrossRefGoogle Scholar
  86. 86.
    Xu X, Tolson BA, Li J, Davison B (2017) Assimilation of synthetic remotely sensed soil moisture in environment Canada’s MESH model. IEEE J Sel Top Appl Earth Obs Remote Sens 10:1317–1327.  https://doi.org/10.1109/JSTARS.2016.2626256CrossRefGoogle Scholar
  87. 87.
    Zeng Z, Tang G, Hong Y et al (2017) Development of an NRCS curve number global dataset using the latest geospatial remote sensing data for worldwide hydrologic applications. Remote Sens Lett 8:528–536.  https://doi.org/10.1080/2150704X.2017.1297544CrossRefGoogle Scholar
  88. 88.
    Patil A, Ramsankaran R (2017) Improving streamflow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations. J Hydrol 555:683–696.  https://doi.org/10.1016/j.jhydrol.2017.10.058CrossRefGoogle Scholar
  89. 89.
    Wanders N, Pan M, Wood EF (2015) Correction of real-time satellite precipitation with multi-sensor satellite observations of land surface variables. Remote Sens Environ 160:206–221.  https://doi.org/10.1016/j.rse.2015.01.016CrossRefGoogle Scholar
  90. 90.
    Lee JH (2016) The consecutive dry days to trigger rainfall over West Africa. J Hydrol -Press 556:934–943.  https://doi.org/10.1016/j.jhydrol.2016.06.003CrossRefGoogle Scholar
  91. 91.
    Brocca L, Pellarin T, Crow WT et al (2016) Rainfall estimation by inverting SMOS soil moisture estimates: A comparison of different methods over Australia. J Geophys Res Atmospheres 121:2016JD025382.  https://doi.org/10.1002/2016jd025382Google Scholar
  92. 92.
    Román-Cascón C, Pellarin T, Gibon F et al (2017) Correcting satellite-based precipitation products through SMOS soil moisture data assimilation in two land-surface models of different complexity: API and SURFEX. Remote Sens Environ 200:295–310.  https://doi.org/10.1016/j.rse.2017.08.022CrossRefGoogle Scholar
  93. 93.
    Koster RD, Brocca L, Crow WT et al (2016) Precipitation estimation using L-band and C-band soil moisture retrievals: precipitation estimation from soil moisture retrievals. Water Resour Res 52:7213–7225.  https://doi.org/10.1002/2016WR019024CrossRefGoogle Scholar
  94. 94.
    Kim J-W, Lu Z, Gutenberg L, Zhu Z (2017) Characterizing hydrologic changes of the Great Dismal Swamp using SAR/InSAR. Remote Sens Environ 198:187–202.  https://doi.org/10.1016/j.rse.2017.06.009CrossRefGoogle Scholar
  95. 95.
    Rondinelli WJ, Hornbuckle BK, Patton JC et al (2015) Different rates of soil drying after rainfall are observed by the SMOS satellite and the south fork in situ soil moisture network. J Hydrometeorol 16:889–903.  https://doi.org/10.1175/JHM-D-14-0137.1CrossRefGoogle Scholar
  96. 96.
    Shellito PJ, Small EE, Colliander A et al (2016) SMAP soil moisture drying more rapid than observed in situ following rainfall events. Geophys Res Lett 43:8068–8075.  https://doi.org/10.1002/2016GL069946CrossRefGoogle Scholar
  97. 97.
    McColl KA, Wang W, Peng B et al (2017) Global characterization of surface soil moisture drydowns: surface soil moisture drydown analysis. Geophys Res Lett 44:3682–3690.  https://doi.org/10.1002/2017GL072819CrossRefGoogle Scholar
  98. 98.
    Tian S, Tregoning P, Renzullo LJ et al (2017) Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals. Water Resour Res 53:1820–1840.  https://doi.org/10.1002/2016WR019641CrossRefGoogle Scholar
  99. 99.
    Menenti M, Li X, Wang J et al (2015) Hydrologic and cryospheric processes observed from space. ISPRS—Int Arch Photogramm Remote Sens Spat Inf Sci XL-7/W3:1101–1110.  https://doi.org/10.5194/isprsarchives-xl-7-w3-1101-2015CrossRefGoogle Scholar
  100. 100.
    Knipper K, Hogue T, Scott R, Franz K (2017) Evapotranspiration estimates derived using multi-platform remote sensing in a semiarid region. Remote Sens 9:184.  https://doi.org/10.3390/rs9030184CrossRefGoogle Scholar
  101. 101.
    Zhuo L, Dai Q, Han D (2015) Evaluation of SMOS soil moisture retrievals over the central United States for hydro-meteorological application. Emerg Sci Appl Microw Remote Sens Data 83–84:146–155.  https://doi.org/10.1016/j.pce.2015.06.002CrossRefGoogle Scholar
  102. 102.
    Zhuo L, Dai Q, Islam T, Han D (2016) Error distribution modelling of satellite soil moisture measurements for hydrological applications: error distribution modelling of satellite soil moisture measurements. Hydrol Process 30:2223–2236.  https://doi.org/10.1002/hyp.10789CrossRefGoogle Scholar
  103. 103.
    Zhuo L, Han D (2017) Hydrological evaluation of satellite soil moisture data in two basins of different climate and vegetation density conditions. Adv Meteorol 2017:1–15.  https://doi.org/10.1155/2017/1086456CrossRefGoogle Scholar
  104. 104.
    Bandara R, Walker JP, Rüdiger C, Merlin O (2015) Towards soil property retrieval from space: an application with disaggregated satellite observations. J Hydrol 522:582–593.  https://doi.org/10.1016/j.jhydrol.2015.01.018CrossRefGoogle Scholar
  105. 105.
    Kumar SV, Peters-Lidard CD, Santanello JA et al (2015) Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol Earth Syst Sci 19:4463–4478.  https://doi.org/10.5194/hess-19-4463-2015CrossRefGoogle Scholar
  106. 106.
    Jarlan L, Khabba S, Er-Raki S et al (2015) Remote sensing of water resources in semi-arid mediterranean areas: the joint international laboratory TREMA. Int J Remote Sens 36:4879–4917.  https://doi.org/10.1080/01431161.2015.1093198CrossRefGoogle Scholar
  107. 107.
    Scaini A, Sánchez N, Vicente-Serrano SM, Martínez-Fernández J (2015) SMOS-derived soil moisture anomalies and drought indices: a comparative analysis using in situ measurements. Hydrol Process 29:373–383.  https://doi.org/10.1002/hyp.10150CrossRefGoogle Scholar
  108. 108.
    Champagne C, Davidson A, Cherneski P et al (2015) Monitoring agricultural risk in canada using L-band passive microwave soil moisture from SMOS. J Hydrometeorol 16:5–18.  https://doi.org/10.1175/JHM-D-14-0039.1CrossRefGoogle Scholar
  109. 109.
    Martinez-Fernandez J, Sanchez N, Gonzalez-Zamora A et al (2015) Feasibility of the SMOS soil moisture for agricultural drought monitoring: assessment with the Soil Water Deficit Index. IEEE, pp 976–979. https://doi.org/10.1109/IGARSS.2015.7325931
  110. 110.
    Sánchez N, González-Zamora Á, Piles M, Martínez-Fernández J (2016) A new Soil Moisture Agricultural Drought Index (SMADI) integrating MODIS and SMOS products: a case of study over the Iberian Peninsula. Remote Sens 8:287.  https://doi.org/10.3390/rs8040287CrossRefGoogle Scholar
  111. 111.
    Sánchez N, Martínez-Fernández J, González-Zamora A (2016) A combined approach with SMOS and MODIS to monitor agricultural drought. ISPRS—Int Arch Photogramm Remote Sens Spat Inf Sci XLI-B8:393–398.  https://doi.org/10.5194/isprsarchives-xli-b8-393-2016CrossRefGoogle Scholar
  112. 112.
    Martínez-Fernández J, González-Zamora A, Sánchez N et al (2016) Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived Soil Water Deficit Index. Remote Sens Environ 177:277–286.  https://doi.org/10.1016/j.rse.2016.02.064CrossRefGoogle Scholar
  113. 113.
    Thiruvengadam P, Rao YS (2016) Spatio-temporal variation of soil moisture and drought monitoring using passive microwave remote sensing. IEEE, pp 3126–3129Google Scholar
  114. 114.
    Paredes-Trejo F, Barbosa H (2017) Evaluation of the SMOS-derived soil water deficit index as agricultural drought index in Northeast of Brazil. Water 9:377.  https://doi.org/10.3390/w9060377CrossRefGoogle Scholar
  115. 115.
    Kędzior M, Zawadzki J (2017) SMOS data as a source of the agricultural drought information: case study of the Vistula catchment, Poland. Geoderma 306:167–182.  https://doi.org/10.1016/j.geoderma.2017.07.018CrossRefGoogle Scholar
  116. 116.
    Velpuri NM, Senay GB, Morisette JT (2016) Evaluating new SMAP soil moisture for drought monitoring in the rangelands of the US high plains. Rangelands 38:183–190.  https://doi.org/10.1016/j.rala.2016.06.002CrossRefGoogle Scholar
  117. 117.
    Mishra A, Vu T, Veettil AV, Entekhabi D (2017) Drought monitoring with soil moisture active passive (SMAP) measurements. J Hydrol 552:620–632.  https://doi.org/10.1016/j.jhydrol.2017.07.033CrossRefGoogle Scholar
  118. 118.
    Liu D, Mishra AK, Yu Z et al (2017) Performance of SMAP, AMSR-E and LAI for weekly agricultural drought forecasting over continental United States. J Hydrol 553:88–104.  https://doi.org/10.1016/j.jhydrol.2017.07.049CrossRefGoogle Scholar
  119. 119.
    Alvarez-Garreton C, Ryu D, Western AW et al (2015) Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes. Hydrol Earth Syst Sci 19:1659–1676.  https://doi.org/10.5194/hess-19-1659-2015CrossRefGoogle Scholar
  120. 120.
    Romanov AN, Khvostov IV (2015) Microwave remote monitoring of altai catastrophic flood dynamics using SMOS data. IEEE Geosci Remote Sens Lett 12:2036–2040.  https://doi.org/10.1109/LGRS.2015.2444592CrossRefGoogle Scholar
  121. 121.
    Seo D, Lakhankar T, Cosgrove B et al (2017) Applying SMOS soil moisture data into the national weather service (NWS)’s research distributed hydrologic model (HL-RDHM) for flash flood guidance application. Remote Sens Appl Soc Environ 8:182–192.  https://doi.org/10.1016/j.rsase.2017.09.002CrossRefGoogle Scholar
  122. 122.
    Fournier S, Reager JT, Lee T et al (2016) SMAP observes flooding from land to sea: the texas event of 2015. Geophys Res Lett 43:10,338–10,346.  https://doi.org/10.1002/2016gl070821CrossRefGoogle Scholar
  123. 123.
    Rahman MS, Di L, Shrestha R et al (2017) Agriculture flood mapping with soil moisture active passive (SMAP) data: a case of 2016 Louisiana flood. IEEE, pp 1–6Google Scholar
  124. 124.
    Avalon Cullen C, Al-Suhili R, Khanbilvardi R (2016) Guidance index for shallow landslide hazard analysis. Remote Sens 8:866.  https://doi.org/10.3390/rs8100866CrossRefGoogle Scholar
  125. 125.
    Chaparro D, Vall-llossera M, Piles M et al (2015) Low soil moisture and high temperatures as indicators for forest fire occurrence and extent across the Iberian Peninsula. IEEE, pp 3325–3328Google Scholar
  126. 126.
    Chaparro D, Piles M, Vall-llossera M (2016) Remotely sensed soil moisture as a key variable in wildfires prevention services. In: Satellite soil moisture retrieval. Elsevier, pp 249–269Google Scholar
  127. 127.
    Chaparro D, Vall-llossera M, Piles M et al (2016) Predicting the extent of wildfires using remotely sensed soil moisture and temperature trends. IEEE J Sel Top Appl Earth Obs Remote Sens 9:2818–2829.  https://doi.org/10.1109/JSTARS.2016.2571838CrossRefGoogle Scholar
  128. 128.
    Chaparro D, Piles M, Vall-llossera M, Camps A (2016) Surface moisture and temperature trends anticipate drought conditions linked to wildfire activity in the Iberian Peninsula. Eur J Remote Sens 49:955–971.  https://doi.org/10.5721/EuJRS20164950CrossRefGoogle Scholar
  129. 129.
    Kerr YH, Mahmoodi A, Al Bitar A et al (2016) SMOS after six years in operations: first glance at climatic trends and anomalies. IEEE, pp 1645–1646Google Scholar
  130. 130.
    Chaparro D, Vayreda J, Vall-llossera M et al (2017) The role of climatic anomalies and soil moisture in the decline of drought-prone forests. IEEE J Sel Top Appl Earth Obs Remote Sens 10:503–514.  https://doi.org/10.1109/JSTARS.2016.2585505CrossRefGoogle Scholar
  131. 131.
    Rahmani A, Golian S, Brocca L (2016) Multiyear monitoring of soil moisture over Iran through satellite and reanalysis soil moisture products. Int J Appl Earth Obs Geoinformation 48:85–95.  https://doi.org/10.1016/j.jag.2015.06.009CrossRefGoogle Scholar
  132. 132.
    Yang Z, Shrestha R, Crow W et al (2016) Evaluation of assimilated SMOS soil moisture data for US cropland soil moisture monitoring. IEEE, pp 5244–5247Google Scholar
  133. 133.
    Bolten JD, Mladenova IE, Crow W, Reynolds C (2016) Enhancing the USDA global crop assessment decision support system using SMAP L3 soil moisture data. IEEE, pp 5241–5243Google Scholar
  134. 134.
    Yang Z, Hu L, Yu G et al (2016) Web service-based SMAP soil moisture data visualization, dissemination and analytics based on vegscape framwork. IEEE, pp 3624–3627Google Scholar
  135. 135.
    Hu L, Di L, Yu E et al (2017) Developing geospatial Web service and system for SMAP soil moisture monitoring. IEEE, pp 1–5Google Scholar
  136. 136.
    McNally A, Husak GJ, Brown M et al (2015) Calculating crop water requirement satisfaction in the West Africa Sahel with remotely sensed soil moisture. J Hydrometeorol 16:295–305.  https://doi.org/10.1175/JHM-D-14-0049.1CrossRefGoogle Scholar
  137. 137.
    El Sharif H, Wang J, Georgakakos AP (2015) Modeling regional crop yield and irrigation demand using SMAP type of soil moisture data. J Hydrometeorol 16:904–916.  https://doi.org/10.1175/JHM-D-14-0034.1CrossRefGoogle Scholar
  138. 138.
    Gherboudj I, Beegum SN, Marticorena B, Ghedira H (2015) Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture: dust emission over mena region. J Geophys Res Atmospheres 120:10,915–10,938.  https://doi.org/10.1002/2015jd023338Google Scholar
  139. 139.
    Kim H, Zohaib M, Cho E et al (2017) Development and assessment of the sand dust pre-diction model by utilizing microwave-based satellite soil moisture and reanalysis datasets in East Asian desert areas. Adv Meteorol 2017:1–13.  https://doi.org/10.1155/2017/1917372CrossRefGoogle Scholar
  140. 140.
    Martens B, Miralles D, Lievens H et al (2016) Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture. Adv Valid Appl Remote Sensed Soil Moisture—Part 2(48):146–162.  https://doi.org/10.1016/j.jag.2015.09.012CrossRefGoogle Scholar
  141. 141.
    Pablos M, Martínez-Fernández J, Piles M et al (2016) Multi-temporal evaluation of soil moisture and land surface temperature dynamics using in situ and satellite observations. Remote Sens 8:587.  https://doi.org/10.3390/rs8070587CrossRefGoogle Scholar
  142. 142.
    Lin L-F, Ebtehaj AM, Wang J, Bras RL (2017) Soil moisture background error covariance and data assimilation in a coupled land-atmosphere model. Water Resour Res 53:1309–1335.  https://doi.org/10.1002/2015WR017548CrossRefGoogle Scholar
  143. 143.
    He L, Chen JM, Liu J et al (2017) Assessment of SMAP soil moisture for global simulation of gross primary production: SMAP soil moisture for improving GPP. J Geophys Res Biogeosciences 122:1549–1563.  https://doi.org/10.1002/2016JG003603CrossRefGoogle Scholar
  144. 144.
    DMN (2017) DMN. www.marocmeteo.ma
  145. 145.
    SMELLS (2018) SMELLS—Soil moisture for dEsert Locust earLy survey. http://smells.isardsat.com/?lang=fr
  146. 146.
    Merlin O, Escorihuela MJ, Mayoral MA et al (2013) Self-calibrated evaporation-based disaggregation of SMOS soil moisture: an evaluation study at 3 km and 100 m resolution in Catalunya, Spain. Remote Sens Environ 130:25–38.  https://doi.org/10.1016/j.rse.2012.11.008CrossRefGoogle Scholar
  147. 147.
    Escorihuela MJ, Merlin O, Piou C, Stefan V (2017) High resolution soil moisture for agricultural applications and low frequency passive microwave user requirement consolidation studyGoogle Scholar
  148. 148.
  149. 149.
  150. 150.
    Merlin O, Rudiger C, Bitar AA et al (2012) Disaggregation of SMOS soil moisture in Southeastern Australia. IEEE Trans Geosci Remote Sens 50:1556–1571.  https://doi.org/10.1109/TGRS.2011.2175000CrossRefGoogle Scholar
  151. 151.
    REC. http://rec.isardsat.com/. Accessed 24 Dec 2017
  152. 152.
    Ojha N, Merlin O (2017) Downscaling the SMOS soil moisture data at 1 km and 100 m resolution using MODIS and LANDSAT optical/thermal dataGoogle Scholar
  153. 153.
    Eweys OA, Escorihuela MJ, Villar JM et al (2017) Disaggregation of SMOS soil moisture to 100 m Resolution using MODIS Optical/Thermal and Sentinel-1 radar data: evaluation over a bare soil site in Morocco. 3rd REC Open Project Meeting. Accessed 14 Nov 2017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hibatoullah Laachrate
    • 1
    Email author
  • Abdelhamid Fadil
    • 2
  • Abdessamad Ghafiri
    • 1
  1. 1.Ben M’sik Faculty of SciencesSidi Othmane, CasablancaMorocco
  2. 2.Hassania School of Public WorksCasablancaMorocco

Personalised recommendations