Skip to main content

Epigenomic, Transcriptome and Image-Based Biomarkers of Aging

  • Chapter
  • First Online:
  • 1483 Accesses

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 10))

Abstract

The need to postpone age-associated decline and maintain late life healthspan is generally agreed, however, available tools and methods still lack accuracy. Indicators of biological age, or biomarkers of aging, therefore, have important roles in simplifying clinical diagnostics to allow healthcare to be tailored to individuals. Moreover, biomarkers of aging can alter current approaches to finding solutions to reduce biological age. Several families of biomarkers have emerged, though most of them are diseases-specific, some of them have great potentials as aging indicators. Here we review the current advances in biomarkers of aging. After describing the definition of aging biomarkers, we emphasize the importance of aging diagnostics, and discuss several basic considerations when modeling biological age. Finally, we highlight some biomarker candidates with the highest application potentials, including epigenome, microRNAs especially exosome microRNAs, and recently developed image-based phenome and microbiome markers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Armstrong NJ et al (2017) Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks. Epigenomics 9(5):689–700

    Article  CAS  PubMed  Google Scholar 

  • Arroyo JD et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Bates DJ et al (2010) MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging Cell 9(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Battaglia R et al (2016) MicroRNAs are stored in human MII oocyte and their expression profile changes in reproductive aging. Biol Reprod 95(6):131

    Article  PubMed  CAS  Google Scholar 

  • Baumgart M et al (2014) RNA-seq of the aging brain in the short-lived fish N. furzeri—conserved pathways and novel genes associated with neurogenesis. Aging Cell 13(6):965–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker JS, Nicetto D, Zaret KS (2016) H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet 32(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Belsky DW et al (2015) Quantification of biological aging in young adults. Proc Natl Acad Sci U S A 112(30):E4104–E4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16(10):593–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458(7237):461–467

    Article  CAS  PubMed  Google Scholar 

  • Bischoff SC (2016) Microbiota and aging. Curr Opin Clin Nutr Metab Care 19(1):26–30

    Article  CAS  PubMed  Google Scholar 

  • Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310(5756):1954–1957

    Article  CAS  PubMed  Google Scholar 

  • Boulias K, Horvitz HR (2012) The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab 15(4):439–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartee GD et al (2016) Exercise promotes healthy aging of skeletal muscle. Cell Metab 23(6):1034–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan MK et al (2014) Applications of blood-based protein biomarker strategies in the study of psychiatric disorders. Prog Neurobiol 122:45–72

    Article  CAS  PubMed  Google Scholar 

  • Chandra T et al (2015) Global reorganization of the nuclear landscape in senescent cells. Cell Rep 10(4):471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Han JD (2015) Aging phenomics enabled by quantitative imaging analysis. Oncotarget 6(19):16794–16795

    PubMed  PubMed Central  Google Scholar 

  • Chen W et al (2015) Three-dimensional human facial morphologies as robust aging markers. Cell Res 25(5):574–587

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng L et al (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 3

    Article  CAS  Google Scholar 

  • Cheng H et al (2018) Repression of human and mouse brain inflammaging transcriptome by broad gene-body histone hyperacetylation. Proc Natl Acad Sci U S A 115(29):7611–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl 1):4586–4591

    Article  CAS  PubMed  Google Scholar 

  • Claesson MJ et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184

    Article  CAS  PubMed  Google Scholar 

  • Clark RI et al (2015) Distinct shifts in microbiota composition during drosophila aging impair intestinal function and drive mortality. Cell Rep 12(10):1656–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colcombe SJ et al (2003) Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci 58(2):176–180

    Article  PubMed  Google Scholar 

  • Conley MN et al (2016) Aging and serum MCP-1 are associated with gut microbiome composition in a murine model. PeerJ 4:e1854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Constantinidis C, Klingberg T (2016) The neuroscience of working memory capacity and training. Nat Rev Neurosci 17(7):438–449

    Article  CAS  PubMed  Google Scholar 

  • Contrepois K et al (2017) Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat Commun 8:14995

    Google Scholar 

  • Criscione SW et al (2016) Reorganization of chromosome architecture in replicative cellular senescence. Sci Adv 2(2):e1500882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crossland H et al (2017) A reverse genetics cell-based evaluation of genes linked to healthy human tissue age. FASEB J 31(1):96–108

    Article  CAS  PubMed  Google Scholar 

  • Dang W et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459(7248):802–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Cabo R et al (2014) The search for antiaging interventions: from elixirs to fasting regimens. Cell 157(7):1515–1526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Lencastre A et al (2010) MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 20(24):2159–2168

    Google Scholar 

  • de Magalhaes JP (2012) Programmatic features of aging originating in development: aging mechanisms beyond molecular damage? FASEB J 26(12):4821–4826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deans C, Maggert KA (2015) What do you mean, “epigenetic”? Genetics 199(4):887–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demark-Wahnefried W et al (2015) Practical clinical interventions for diet, physical activity, and weight control in cancer survivors. CA Cancer J Clin 65(3):167–189

    Article  PubMed  Google Scholar 

  • Dewey FE et al (2014) Clinical interpretation and implications of whole-genome sequencing. JAMA 311(10):1035–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diabetes Prevention Program Research Group (2015) Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the diabetes prevention program outcomes study. Lancet Diabetes Endocrinol 3(11):866–875

    Google Scholar 

  • Dixon JR et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll I et al (2009) Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology 72(22):1906–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond MJ et al (2011) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 43(10):595–603

    Article  CAS  PubMed  Google Scholar 

  • Dryden NH et al (2014) Unbiased analysis of potential targets of breast cancer susceptibility loci by capture Hi-C. Genome Res 24(11):1854–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott G et al (2015) Intermediate DNA methylation is a conserved signature of genome regulation. Nat Commun 6:6363

    Article  CAS  PubMed  Google Scholar 

  • ElSharawy A et al (2012) Genome-wide miRNA signatures of human longevity. Aging Cell 11(4):607–616

    Article  CAS  PubMed  Google Scholar 

  • Enge M et al (2017) Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171(2):321–330 e14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ewald CY, Marfil V, Li C (2016) Alzheimer-related protein APL-1 modulates lifespan through heterochronic gene regulation in Caenorhabditis elegans. Aging Cell 15(6):1051–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Evans RM (2017) Exercise mimetics: impact on health and performance. Cell Metab 25(2):242–247

    Article  CAS  PubMed  Google Scholar 

  • Fang R et al (2016) Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res 26(12):1345–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field AE et al (2018) DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell 71(6):882–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzenberger E et al (2014) The polyphenol quercetin protects the mev-1 mutant of Caenorhabditis elegans from glucose-induced reduction of survival under heat-stress depending on SIR-2.1, DAF-12, and proteasomal activity. Mol Nutr Food Res 58(5):984–994

    Article  CAS  Google Scholar 

  • Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23(8):413–418

    Article  CAS  PubMed  Google Scholar 

  • Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9

    Article  PubMed  Google Scholar 

  • Gladyshev VN (2016) Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 15(4):594–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glorioso C, Sibille E (2011) Between destiny and disease: genetics and molecular pathways of human central nervous system aging. Prog Neurobiol 93(2):165–181

    Article  CAS  PubMed  Google Scholar 

  • Green CD et al (2017) Impact of dietary interventions on noncoding RNA networks and mRNAs encoding chromatin-related factors. Cell Rep 18(12):2957–2968

    Article  CAS  PubMed  Google Scholar 

  • Greer EL et al (2010) Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466(7304):383–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross CP et al (2006) Relation between medicare screening reimbursement and stage at diagnosis for older patients with colon cancer. JAMA 296(23):2815–2822

    Article  PubMed  Google Scholar 

  • Gunn DA et al (2008) Perceived age as a biomarker of ageing: a clinical methodology. Biogerontology 9(5):357–364

    Article  PubMed  Google Scholar 

  • Han Y et al (2012) Stress-associated H3K4 methylation accumulates during postnatal development and aging of rhesus macaque brain. Aging Cell 11(6):1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Kennedy BK (2016) Does longer lifespan mean longer healthspan? Trends Cell Biol 26(8):565–568

    Article  PubMed  PubMed Central  Google Scholar 

  • Haqqani AS et al (2013) Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids Barriers CNS 10(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison DE et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690

    Article  CAS  PubMed  Google Scholar 

  • Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115

    Article  PubMed  PubMed Central  Google Scholar 

  • Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19(6):371–384

    Article  CAS  PubMed  Google Scholar 

  • Hoy AM, Buck AH (2012) Extracellular small RNAs: what, where, why? Biochem Soc Trans 40(4):886–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z et al (2014) Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28(4):396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X et al (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genom 14:319

    Article  CAS  Google Scholar 

  • Hunter MP et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3(11):e3694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ibanez-Ventoso C et al (2006) Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell 5(3):235–246

    Article  CAS  PubMed  Google Scholar 

  • Integrative Analysis of Lung Cancer E et al (2018) Assessment of lung cancer risk on the basis of a biomarker panel of circulating proteins. JAMA Oncol 4(10):e182078

    Google Scholar 

  • Inukai S et al (2012) Novel microRNAs differentially expressed during aging in the mouse brain. PLoS ONE 7(7):e40028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inukai S et al (2018) A microRNA feedback loop regulates global microRNA abundance during aging. RNA 24(2):159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MA et al (2016) Erratum to: signatures of early frailty in the gut microbiota. Genome Med 8(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffery IB, Lynch DB, O’Toole PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10(1):170–182

    Article  CAS  PubMed  Google Scholar 

  • Jenkins D, Sievenpiper J, Jones P (2018) Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 379(14):1387–1388

    Article  PubMed  Google Scholar 

  • Jin C et al (2011) Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 14(2):161–72

    Article  CAS  PubMed  Google Scholar 

  • Kang HJ et al (2011) Spatio-temporal transcriptome of the human brain. Nature 478(7370):483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M et al (2009) The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 28(25):2419–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M et al (2011) Age-associated changes in expression of small, noncoding RNAs, including microRNAs in C. elegans. RNA 17(10):1804–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami K et al (2009) Age-related difference of site-specific histone modifications in rat liver. Biogerontology 10(4):415–421

    Article  CAS  PubMed  Google Scholar 

  • Kennedy BK et al (2014) Geroscience: linking aging to chronic disease. Cell 159(4):709–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshishian H et al (2017) Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry. Nat Protoc 12(8):1683–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna A et al (2011) Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice. Aging (Albany NY) 3(3):223–236

    Article  CAS  Google Scholar 

  • Konturek PC et al (2015) Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. J Physiol Pharmacol 66(4):483–491

    CAS  PubMed  Google Scholar 

  • Kopeina GS, Senichkin VV, Zhivotovsky B (2017) Caloric restriction—a promising anti-cancer approach: from molecular mechanisms to clinical trials. Biochim Biophys Acta Rev Cancer 1867(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V et al (2011) Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci U S A 108(30):12325–12330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb J et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935

    Article  CAS  PubMed  Google Scholar 

  • Larson K et al (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8(1):e1002473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laslett LL et al (2014) Moderate vitamin D deficiency is associated with changes in knee and hip pain in older adults: a 5-year longitudinal study. Ann Rheum Dis 73(4):697–703

    Article  CAS  PubMed  Google Scholar 

  • Lau EM, Humbert M, Celermajer DS (2015) Early detection of pulmonary arterial hypertension. Nat Rev Cardiol 12(3):143–155

    Article  PubMed  Google Scholar 

  • Lehmann SM et al (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15(6):827–835

    Article  CAS  PubMed  Google Scholar 

  • Levine ME et al (2018) An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 10(4):573–591

    Article  Google Scholar 

  • Li N et al (2011a) Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol Aging 32(5):944–955

    Article  CAS  PubMed  Google Scholar 

  • Li N et al (2011b) Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech Ageing Dev 132(3):75–85

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2011c) Circulatory miR34a as an RNAbased, noninvasive biomarker for brain aging. Aging (Albany NY) 3(10):985–1002

    Article  CAS  Google Scholar 

  • Li H, Qi Y, Jasper H (2016) Preventing age-related decline of gut compartmentalization limits microbiota dysbiosis and extends lifespan. Cell Host Microbe 19(2):240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang R et al (2011) Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice. Aging Cell 10(6):1080–1088

    Article  CAS  PubMed  Google Scholar 

  • Liao CY et al (2010) Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9(1):92–95

    Article  CAS  PubMed  Google Scholar 

  • Liao CY, Johnson TE, Nelson JF (2013) Genetic variation in responses to dietary restriction–an unbiased tool for hypothesis testing. Exp Gerontol 48(10):1025–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman-Aiden E et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N et al (2012) The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482(7386):519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F et al (2016) The MC1R gene and youthful looks. Curr Biol 26(9):1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13(7):436–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machida T et al (2015) MicroRNAs in salivary exosome as potential biomarkers of aging. Int J Mol Sci 16(9):21294–21309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes OC et al (2008) Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 129(9):534–541

    Article  CAS  PubMed  Google Scholar 

  • Mangiola F et al (2018) Gut microbiota and aging. Eur Rev Med Pharmacol Sci 22(21):7404–7413

    CAS  PubMed  Google Scholar 

  • Marioni RE et al (2015) The epigenetic clock is correlated with physical and cognitive fitness in the Lothian birth cohort 1936. Int J Epidemiol 44(4):1388–1396

    Article  PubMed  PubMed Central  Google Scholar 

  • Maures TJ et al (2011) The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 10(6):980–990

    Article  CAS  PubMed  Google Scholar 

  • McColl G et al (2008) Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J Biol Chem 283(1):350–357

    Article  CAS  PubMed  Google Scholar 

  • McCord RP et al (2013) Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res 23(2):260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell MJ, Jain RK, Langer R (2017) Engineering and physical sciences in oncology: challenges and opportunities. Nat Rev Cancer 17(11):659–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyawaki S et al (2016) Facial pigmentation as a biomarker of carotid atherosclerosis in middle-aged to elderly healthy Japanese subjects. Skin Res Technol 22(1):20–24

    Article  CAS  PubMed  Google Scholar 

  • Mori MA et al (2012) Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab 16(3):336–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumbach MR et al (2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13(11):919–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neff F et al (2013) Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest 123(8):3272–3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neri F et al (2017) Intragenic DNA methylation prevents spurious transcription initiation. Nature 543(7643):72–77

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen T et al (2017) Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals. Clin Epigenetics 9:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni Z et al (2012) Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell 11(2):315–325

    Article  CAS  PubMed  Google Scholar 

  • Noren Hooten N et al (2010) MicroRNA expression patterns reveal differential expression of target genes with age. PLoS ONE 5(5):e10724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olivieri F et al (2017) Circulating miRNAs and miRNA shuttles as biomarkers: perspective trajectories of healthy and unhealthy aging. Mech Ageing Dev 165(Pt B):162–170

    Article  CAS  PubMed  Google Scholar 

  • Organization WH (2017) World report on ageing and health. Indian J Med Res 145(1):150–151

    Article  Google Scholar 

  • O’Sullivan RJ et al (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17(10):1218–1225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey AC et al (2011) MicroRNA profiling reveals age-dependent differential expression of nuclear factor kappaB and mitogen-activated protein kinase in adipose and bone marrow-derived human mesenchymal stem cells. Stem Cell Res Ther 2(6):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge L, Deelen J, Slagboom PE (2018) Facing up to the global challenges of ageing. Nature 561(7721):45–56

    Article  CAS  PubMed  Google Scholar 

  • Peleg S et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328(5979):753–756

    Article  CAS  PubMed  Google Scholar 

  • Peleg S et al (2016) The metabolic impact on histone acetylation and transcription in ageing. Trends Biochem Sci 41(8):700–711

    Article  CAS  PubMed  Google Scholar 

  • Peters MJ et al (2015) The transcriptional landscape of age in human peripheral blood. Nat Commun 6:8570

    Article  CAS  PubMed  Google Scholar 

  • Petkovich DA et al (2017) Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab 25(4):954–960 e6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piazzesi A et al (2016) Replication-independent histone variant H3.3 controls animal lifespan through the regulation of pro-longevity transcriptional programs. Cell Rep 17(4):987–996

    Article  CAS  PubMed  Google Scholar 

  • Rae MJ et al (2010) The demographic and biomedical case for late-life interventions in aging. Sci Transl Med 2(40):40cm21

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao SS et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rea SL et al (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet 37(8):894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riera CE, Dillin A (2015) Can aging be ‘drugged’? Nat Med 21(12):1400–1405

    Article  CAS  PubMed  Google Scholar 

  • Robine JM, Cubaynes S (2017) Worldwide demography of centenarians. Mech Ageing Dev 165(Pt B):59–67

    Article  PubMed  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101(45):15998–16003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutherford MJ et al (2015) The impact of eliminating age inequalities in stage at diagnosis on breast cancer survival for older women. Br J Cancer 112(Suppl 1):S124–S128

    Article  PubMed  PubMed Central  Google Scholar 

  • Santoro A et al (2018) Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci 75(1):129–148

    Article  CAS  PubMed  Google Scholar 

  • Sarfati D, Koczwara B, Jackson C (2016) The impact of comorbidity on cancer and its treatment. CA Cancer J Clin 66(4):337–350

    Article  PubMed  Google Scholar 

  • Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scahill RI et al (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60(7):989–994

    Article  PubMed  Google Scholar 

  • Scherbov S, Sanderson WC (2016) New approaches to the conceptualization and measurement of age and aging. J Aging Health 28(7):1159–1177

    Article  PubMed  Google Scholar 

  • Schmid G et al (2016) Expression and promotor hypermethylation of miR-34a in the various histological subtypes of ovarian cancer. BMC Cancer 16:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoenborn NL et al (2018) Preferred clinician communication about stopping cancer screening among older US adults: results from a national survey. JAMA Oncol 4(8):1126–1128

    Article  PubMed  PubMed Central  Google Scholar 

  • Schubeler D (2015) Function and information content of DNA methylation. Nature 517(7534):321–326

    Article  CAS  PubMed  Google Scholar 

  • Sen P et al (2015) H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev 29(13):1362–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirakabe A et al (2016) Aging and autophagy in the heart. Circ Res 118(10):1563–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumaker DK et al (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103(23):8703–8708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siebold AP et al (2010) Polycomb repressive complex 2 and trithorax modulate drosophila longevity and stress resistance. Proc Natl Acad Sci U S A 107(1):169–174

    Article  CAS  PubMed  Google Scholar 

  • Singh J et al (2016) Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: role of microRNA-133a. Am J Physiol Gastrointest Liver Physiol 311(5):G964–G973

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith-Vikos T et al (2014) MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr Biol 24(19):2238–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith-Vikos T et al (2016) A serum miRNA profile of human longevity: findings from the Baltimore longitudinal study of aging (BLSA). Aging (Albany NY) 8(11):2971–2987

    Article  CAS  Google Scholar 

  • Sood S et al (2015) A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status. Genome Biol 16:185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stadler MB et al (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480(7378):490–495

    Article  CAS  PubMed  Google Scholar 

  • Stubbs TM et al (2017) Multi-tissue DNA methylation age predictor in mouse. Genome Biol 18(1):68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun D et al (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14(5):673–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Yu R, Dang W (2018) Chromatin architectural changes during cellular senescence and aging. Genes 9(4). (Basel)

    Article  PubMed Central  CAS  Google Scholar 

  • Talbert PB, Henikoff S (2017) Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol 18(2):115–126

    Article  CAS  PubMed  Google Scholar 

  • Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299(5611):1346–1351

    Article  CAS  PubMed  Google Scholar 

  • Tazawa H et al (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104(39):15472–15477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevaranjan N et al (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21(4):455–466 e4

    Article  CAS  Google Scholar 

  • Thom G, Lean M (2017) Is there an optimal diet for weight management and metabolic health? Gastroenterology 152(7):1739–1751

    Article  PubMed  Google Scholar 

  • Tian Y et al (2016) Mitochondrial stress induces chromatin reorganization to promote longevity and UPR (mt). Cell 165(5):1197–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmons JA (2017) Molecular diagnostics of ageing and tackling age-related disease. Trends Pharmacol Sci 38(1):67–80

    Article  CAS  PubMed  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410(6825):227–230

    Article  CAS  PubMed  Google Scholar 

  • van der Stok EP et al (2017) Surveillance after curative treatment for colorectal cancer. Nat Rev Clin Oncol 14(5):297–315

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh S, Workman JL (2015) Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 16(3):178–189

    Article  CAS  PubMed  Google Scholar 

  • Vickers KC et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner W (2017) Epigenetic aging clocks in mice and men. Genome Biol 18(1):107

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T et al (2017) Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol 18(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Yuan Q, Xie L (2018) Histone modifications in aging: the underlying mechanisms and implications. Curr Stem Cell Res Ther 13(2):125–135

    Article  CAS  PubMed  Google Scholar 

  • Weber JA et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson JE et al (2012) Rapamycin slows aging in mice. Aging Cell 11(4):675–682

    Article  CAS  PubMed  Google Scholar 

  • Wong HR et al (2017) Improved risk stratification in pediatric septic shock using both protein and mRNA biomarkers. PERSEVERE-XP. Am J Respir Crit Care Med 196(4):494–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood JG et al (2010) Chromatin remodeling in the aging genome of Drosophila. Aging Cell 9(6):971–978

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517–534

    Article  CAS  PubMed  Google Scholar 

  • Xia X et al (2017) Molecular and phenotypic biomarkers of aging. F1000Res 6:860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J et al (2013) MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age (Dordr) 35(1):11–22

    Article  CAS  Google Scholar 

  • Yang X et al (2014) Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26(4):577–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young AL et al (2014) A data-driven model of biomarker changes in sporadic Alzheimer’s disease. Brain 137(Pt 9):2564–2577

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W et al (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348(6239):1160–1163

    Google Scholar 

  • Zhao Y, Garcia BA (2015) Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol 7(9):a025064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Q et al (2016) Dissecting the precise role of H3K9 methylation in crosstalk with DNA maintenance methylation in mammals. Nat Commun 7:12464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (91749205, 91329302 and 31210103916), China Ministry of Science and Technology (2015CB964803 and 2016YFE0108700) and Max Planck fellowship to J.D.J.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Dong J. Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, Y., Mu, Y., Chen, W., Han, JD.J. (2019). Epigenomic, Transcriptome and Image-Based Biomarkers of Aging. In: Moskalev, A. (eds) Biomarkers of Human Aging. Healthy Ageing and Longevity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-24970-0_5

Download citation

Publish with us

Policies and ethics