Skip to main content

Biological Age is a Universal Marker of Aging, Stress, and Frailty

  • Chapter
  • First Online:
Biomarkers of Human Aging

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 10))

Abstract

We carried out a systematic investigation of supervised learning techniques for biological age modeling. The biological aging acceleration is associated with the remaining health- and life-span. Artificial Deep Neural Networks (DNN) could be used to reduce the error of chronological age predictors, though often at the expense of the ability to distinguish health conditions. Mortality and morbidity hazards models based on survival follow-up data showed the best performance. Alternatively, logistic regression trained to identify chronic diseases was shown to be a good approximation of hazards models when data on survival follow-up times were unavailable. In all models, the biological aging acceleration was associated with disease burden in persons with diagnosed chronic age-related conditions. For healthy individuals, the same quantity was associated with molecular markers of inflammation (such as C-reactive protein), smoking, current physical, and mental health (including sleeping troubles, feeling tired or little interest in doing things). The biological age thus emerged as a universal biomarker of age, frailty and stress for applications involving large scale studies of the effects of longevity drugs on risks of diseases and quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RD (1985) Logistic regression in survival analysis. Am J Epidemiol 121(3):465–471

    Article  CAS  Google Scholar 

  • Baird GS, Nelson SK, Keeney TR, Stewart A, Williams S, Kraemer S, Peskind ER, Montine TJ (2012) Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am J Pathol 180(2):446–56. https://doi.org/10.1016/j.ajpath.2011.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barzilai N, Rennert G (2012) The rationale for delaying aging and the prevention of age-related diseases. Rambam Maimonides Med J 3(4)

    Article  Google Scholar 

  • Bender R, Augustin T, Blettner M (2005) Generating survival times to simulate cox proportional hazards models. Stat Med 24(11):1713–1723

    Article  Google Scholar 

  • Bobrov E, Georgievskaya A, Kiselev K, Sevastopolsky A, Zhavoronkov A, Gurov S, Rudakov K, Tobar MdPB, Jaspers S, Clemann S (2018) Photoageclock: deep learning algorithms for development of non-invasive visual biomarkers of aging. Aging (Albany NY) 10(11):3249

    Article  Google Scholar 

  • Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, McGue M, Christensen K (2016) DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15(1):149–54. https://doi.org/10.1111/acel.12421

    Article  CAS  PubMed  Google Scholar 

  • Cox DR (1992) Regression models and life-tables. In: Breakthroughs in statistics. Springer, pp 527–541

    Google Scholar 

  • Doll R, Peto R, Boreham J, Sutherland I (2004) Mortality in relation to smoking: 50 years’ observations on male british doctors. BMJ 328(7455):1519

    Article  Google Scholar 

  • Enroth S, Enroth SB, Johansson A, Gyllensten U (2015) Protein profiling reveals consequences of lifestyle choices on predicted biological aging. Sci Rep 5

    Google Scholar 

  • Fedichev PO (2018) Hacking aging: a strategy to use big data from medical studies to extend human life. Front Gen 9:483

    Google Scholar 

  • Gao X, Zhang Y, Saum KU, Schöttker B, Breitling LP, Brenner H (2016) Tobacco smoking and smoking-related DNA methylation are associated with the development of frailty among older adults. Epigenetics (just-accepted)

    Google Scholar 

  • Gompertz B (1820) A sketch of an analysis and notation applicable to the value of life contingencies. Philos Trans R Soc 110:214–294

    Article  Google Scholar 

  • Green MS, Symons MJ (1983) A comparison of the logistic risk function and the proportional hazards model in prospective epidemiologic studies. J Chronic Dis 36(10):715–723

    Article  CAS  Google Scholar 

  • Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell 49(2):359–367

    Article  CAS  Google Scholar 

  • Heikkilä K, Ebrahim S, Lawlor DA (2007) A systematic review of the association between circulating concentrations of C reactive protein and cancer. J Epidemiol Commun Health 61(9):824–833

    Article  Google Scholar 

  • Horvath S (2013) Dna methylation age of human tissues and cell types. Genome Biol 14(10):3156

    Article  Google Scholar 

  • Horvath S, Levine AJ (2015) HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis 212(10):1563–73. https://doi.org/10.1093/infdis/jiv277

    Article  PubMed  PubMed Central  Google Scholar 

  • Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schönfels W, Ahrens M, Heits N, Bell JT, Tsai PC, Spector TD et al (2014a) Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci 111(43):15538–15543

    Article  CAS  Google Scholar 

  • Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schönfels W, Ahrens M, Heits N, Bell JT, Tsai PC, Spector TD, Deloukas P, Siebert R, Sipos B, Becker T, Röucken C, Schafmayer C, Hampe J, (2014b) Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA 111(43):15538–15543. https://doi.org/10.1073/pnas.1412759111

    Article  CAS  Google Scholar 

  • Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, Blasio AMD, Giuliani C, Tung S, Vinters HV, Franceschi C (2015a) Accelerated epigenetic aging in Down syndrome. Aging Cell 14(3):491–5. https://doi.org/10.1111/acel.12325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath S, Pirazzini C, Bacalini MG, Gentilini D, Blasio AMD, Delledonne M, Mari D, Arosio B, Monti D, Passarino G, Rango FD, D’Aquila P, Giuliani C, Marasco E, Collino S, Descombes P, Garagnani P, Franceschi C (2015b) Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY) 7(12):1159–1170 https://doi.org/10.18632/aging.100861

    Article  CAS  Google Scholar 

  • Jia L, Zhang W, Jia R, Zhang H, Chen X (2016) Construction formula of biological age using the principal component analysis. BioMed Research int

    Google Scholar 

  • Kristic J, Vuckovic F, Menni C, Klaric L, Keser T, Beceheli I, Pucic-Bakovic M, Novokmet M, Mangino M, Thaqi K, Rudan P, Novokmet N, Sarac J, Missoni S, Kolcic I, Polasek O, Rudan I, Campbell H, Hayward C, Aulchenko Y, Valdes A, Wilson JF, Gornik O, Primorac D, Zoldos V, Spector T, Lauc G (2014) Glycans are a novel biomarker of chronological and biological ages. J Gerontol A Biol Sci Med Sci 69(7):779–89. https://doi.org/10.1093/gerona/glt190

    Article  CAS  PubMed  Google Scholar 

  • Levine ME (2013) Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci 68(6):667–674

    Article  Google Scholar 

  • Levine ME, Crimmins EM (2014) A comparison of methods for assessing mortality risk. Am J Hum Biol 26(6):768–776

    Article  Google Scholar 

  • Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y et al (2018) An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 10(4):573

    Article  Google Scholar 

  • Liu Z, Kuo PL, Horvath S, Crimmins E, Ferrucci L, Levine M (2018) Phenotypic age: a novel signature of mortality and morbidity risk. p 363291

    Google Scholar 

  • Makeham WM (1860) On the law of mortality and construction of annuity tables. Assur Mag J Inst Actuaries 8(06):301–310

    Article  Google Scholar 

  • Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR et al (2015) Dna methylation age of blood predicts all-cause mortality in later life. Genome Biol 16(1):1

    Article  CAS  Google Scholar 

  • Mitnitski A, Rockwood K (2016) The rate of aging: the rate of deficit accumulation does not change over the adult life span. Biogerontology 17(1):199–204

    Article  Google Scholar 

  • Nakamura E, Miyao K (2007) A method for identifying biomarkers of aging and constructing an index of biological age in humans. J Gerontol Ser A: Biol Sci Med Sci 62(10):1096–1105

    Article  Google Scholar 

  • Nakamura E, Miyao K, Ozeki T (1988) Assessment of biological age by principal component analysis. Mech Ageing Dev 46(1–3):1–18

    Article  CAS  Google Scholar 

  • Niccoli T, Partridge L (2012) Ageing as a risk factor for disease. Current Biol 22(17):R741–R752

    Article  CAS  Google Scholar 

  • Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, Abe F, Osawa R (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microb 16:90

    Article  Google Scholar 

  • Park J, Cho B, Kwon H, Lee C (2009) Developing a biological age assessment equation using principal component analysis and clinical biomarkers of aging in Korean men. Arch Gerontol Geriatr 49(1):7–12

    Article  Google Scholar 

  • Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K, Wilson YA, Kobes S, Tukiainen T, Ramos YF, Goring HH, Fornage M, Liu Y, Gharib SA, Stranger BE, De Jager PL, Aviv A, Levy D, Murabito JM, Munson PJ, Huan T, Hofman A, Uitterlinden AG, Rivadeneira F, van Rooij J, Stolk L, Broer L, Verbiest MM, Jhamai M, Arp P, Metspalu A, Tserel L, Milani L, Samani NJ, Peterson P, Kasela S, Codd V, Peters A, Ward-Caviness CK, Herder C, Waldenberger M, Roden M, Singmann P, Zeilinger S, Illig T, Homuth G, Grabe HJ, Volzke H, Steil L, Kocher T, Murray A, Melzer D, Yaghootkar H, Bandinelli S, Moses EK, Kent JW, Curran JE, Johnson MP, Williams-Blangero S, Westra HJ, McRae AF, Smith JA, Kardia SL, Hovatta I, Perola M, Ripatti S, Salomaa V, Henders AK, Martin NG, Smith AK, Mehta D, Binder EB, Nylocks KM, Kennedy EM, Klengel T, Ding J, Suchy-Dicey AM, Enquobahrie DA, Brody J, Rotter JI, Chen YD, Houwing-Duistermaat J, Kloppenburg M, Slagboom PE, Helmer Q, den Hollander W, Bean S, Raj T, Bakhshi N, Wang QP, Oyston LJ, Psaty BM, Tracy RP, Montgomery GW, Turner ST, Blangero J, Meulenbelt I, Ressler KJ, Yang J, Franke L, Kettunen J, Visscher PM, Neely GG, Korstanje R, Hanson RL, Prokisch H, Ferrucci L, Esko T, Teumer A, van Meurs JB, Johnson AD, Nalls MA, Hernandez DG, Cookson MR, Gibbs RJ, Hardy J, Ramasamy A, Zonderman AB, Dillman A, Traynor B, Smith C, Longo DL, Trabzuni D, Troncoso J, van der Brug M, Weale ME, OBrien R, Johnson R, Walker R, Zielke RH, Arepalli S, Ryten M, Singleton AB (2015) The transcriptional landscape of age in human peripheral blood. Nat Commun 6:8570

    Google Scholar 

  • Podolskiy D, Molodtcov I, Zenin A, Kogan V, Menshikov L, Gladyshev V, Reis RJS, Fedichev P (2015) Critical dynamics of gene networks is a mechanism behind ageing and Gompertz law. arXiv preprint arXiv:150204307

  • Podolskiy DI, Lobanov AV, Kryukov GV, Gladyshev VN (2016) Analysis of cancer genomes reveals basic features of human aging and its role in cancer development. Nat Commun 7:12157

    Article  CAS  Google Scholar 

  • Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, Ostrovskiy A, Cantor C, Vijg J, Zhavoronkov A (2016) Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging (Albany NY) 8(5):1021

    Article  CAS  Google Scholar 

  • Pyrkov TV, Getmantsev E, Zhurov B, Avchaciov K, Pyatnitskiy M, Menshikov L, Khodova K, Gudkov AV, Fedichev PO (2018a) Quantitative characterization of biological age and frailty based on locomotor activity records. Aging 10(10):2973–2990. https://doi.org/10.18632/aging.101603, https://doi.org/10.18632/aging.101603

  • Pyrkov TV, Slipensky K, Barg M, Kondrashin A, Zhurov B, Zenin A, Pyatnitskiy M, Menshikov L, Markov S, Fedichev PO (2018b) Extracting biological age from biomedical data via deep learning: too much of a good thing? Sci Rep 8(1):5210

    Google Scholar 

  • Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26(3):303

    Article  Google Scholar 

  • Tarkhov AE, Menshikov LI, Fedichev PO (2017) Strehler-mildvan correlation is a degenerate manifold of Gompertz fit. J Theor Biol 416:180–189

    Article  Google Scholar 

  • WHO (2016) World health statistics 2016: monitoring health for the SDGs sustainable development goals. World Health Organization

    Google Scholar 

  • Yu R, Wu WC, Leung J, Hu SC, Woo J (2017) Frailty and its contributory factors in older adults: a comparison of two asian regions (Hong Kong and Taiwan). Int J Environ Res Public Health 14(10):1096

    Article  Google Scholar 

  • Zenin A, Tsepilov Y, Sharapov S, Getmantsev E, Menshikov L, Fedichev PO, Aulchenko Y (2019) Identification of 12 genetic loci associated with human healthspan. Commun Biol 2(1):41

    Article  Google Scholar 

  • Zhang X, Justice AC, Hu Y, Wang Z, Zhao H, Wang G, Johnson EO, Emu B, Sutton RE, Krystal JH et al (2016) Epigenome-wide differential dna methylation between HIV-infected and uninfected individuals. Epigenetics 11(10):750–760

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Konstantin Avchaciov from Gero team for proof reading and thoughtful comments. The work was supported by Gero LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy V. Pyrkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pyrkov, T.V., Fedichev, P.O. (2019). Biological Age is a Universal Marker of Aging, Stress, and Frailty. In: Moskalev, A. (eds) Biomarkers of Human Aging. Healthy Ageing and Longevity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-24970-0_3

Download citation

Publish with us

Policies and ethics