Skip to main content

Approaches and Methods for Variant Analysis in the Genome of a Single Cell

  • Chapter
  • First Online:
Biomarkers of Human Aging

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 10))

Abstract

Every cell in the human body has genomic variants that are either inherited or acquired during lifetime as a result of development, environmental exposure, and aging. Contrary to the former ones, the latter are present in a fraction of cells, which could be as small as a single cell, and are called mosaic variants. Therefore, studying single cells is the ultimate way of analyzing these variants. Analysis of a single cell genome is challenging due to low DNA amounts, and several strategies exist to amplify the DNA. The amplifications introduce errors and biases in the resulting material, which hinder the discovery of true variants. Furthermore, proper analytical considerations are important for both resolving introduced errors and comprehensive variant discovery. Thus, confident variant detection depends on combinations of the following four factors: (1) frequency and type of a mosaic variant; (2) strategy utilized for the discovery; (3) applied experimental and analytical method; and (4) funds and effort that can be invested into each experiment. As of now, none of the existing strategies and techniques are universally applicable to variants of all types, nor are they universally cost effective. Here, we will discuss strategies, experimental techniques, and analytical methods for discovery of a spectrum of mosaic variants from single cell analyses and approaches for validation of discovered variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 1000 Genomes Project Consortium, Corresponding Authors, Steering Committee, Production Group, Coriell Institute for Medical Research, Illumina et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74. PMCID: PMC4750478

    Google Scholar 

  • Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L et al (2012) Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492(7429):438–442. PMCID: PMC3532053

    Article  CAS  Google Scholar 

  • Abyzov A, Tomasini L, Zhou B, Vasmatzis N, Coppola G, Amenduni M et al (2017) One thousand somatic SNVs per skin fibroblast cell set baseline of mosaic mutational load with patterns that suggest proliferative origin. Genome Res 27(4):512–523. PMCID: PMC5378170

    Article  CAS  Google Scholar 

  • Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. Cold Spring Harbor Lab 21(6):974–984. PMCID: PMC3106330

    Article  CAS  Google Scholar 

  • Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S et al (2015) Clock-like mutational processes in human somatic cells. Nat Genet 47(12):1402–1407. PMCID: PMC4783858

    Article  CAS  Google Scholar 

  • Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421. PMCID: PMC3776390

    Google Scholar 

  • Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88(2):557–579

    Article  CAS  Google Scholar 

  • Bacolla A, Cooper DN, Vasquez KM (2014) Mechanisms of base substitution mutagenesis in cancer genomes. Genes (Basel) 5(1):108–146. PMCID: PMC3978516

    Article  Google Scholar 

  • Bae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T, Franjic D et al (2018) Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359(6375):550–555. PMCID: PMC6311130

    Article  Google Scholar 

  • Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479(7374):534–537. PMCID: PMC3224101

    Article  CAS  Google Scholar 

  • Behjati S, Huch M, van Boxtel R, Karthaus W, Wedge DC, Tamuri AU et al (2014) Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513(7518):422–425. PMCID: PMC4227286

    Article  CAS  Google Scholar 

  • Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N et al (2016) Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538(7624):260–264

    Article  CAS  Google Scholar 

  • Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, Poduri A et al (2014) Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 8(5):1280–1289. PMCID: PMC4272008

    Google Scholar 

  • Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31(3):213–219. PMCID: PMC3833702

    Article  CAS  Google Scholar 

  • Chen C, Xing D, Tan L, Li H, Zhou G, Huang L et al (2017) Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI). Science 356(6334):189–194

    Article  CAS  Google Scholar 

  • Conrad DF, Bird C, Blackburne B, Lindsay S, Mamanova L, Lee C et al (2010) Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat Genet 42(5):385–391

    Article  CAS  Google Scholar 

  • Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99(8):5261–5266. PMCID: PMC122757

    Article  CAS  Google Scholar 

  • Dean PN, Jett JH (1974) Mathematical analysis of DNA distributions derived from flow microfluorometry. J Cell Biol 60(2):523–527. PMCID: PMC2109170

    Article  CAS  Google Scholar 

  • Dong X, Zhang L, Milholland B, Lee M, Maslov AY, Wang T et al (2017) Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nat Methods. PMCID: PMC5408311

    Google Scholar 

  • Duncan AW, Hanlon Newell AE, Smith L, Wilson EM, Olson SB, Thayer MJ et al (2012) Frequent aneuploidy among normal human hepatocytes. Gastroenterology 142(1):25–28. PMCID: PMC3244538

    Article  Google Scholar 

  • Erwin JA, Paquola ACM, Singer T, Gallina I, Novotny M, Quayle C et al (2016) L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 19(12):1583–1591. PMCID: PMC5127747

    Article  CAS  Google Scholar 

  • Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS et al (2012) Single-neuron sequencing analysis of l1 retrotransposition and somatic mutation in the human brain. Cell 151(3):483–496. PMCID: PMC3567441

    Article  CAS  Google Scholar 

  • Evrony GD, Lee E, Mehta BK, Benjamini Y, Johnson RM, Cai X et al (2015) Cell lineage analysis in human brain using endogenous retroelements. Neuron 85(1):49–59. PMCID: PMC4299461

    Article  CAS  Google Scholar 

  • Falconer E, Hills M, Naumann U, Poon SSS, Chavez EA, Sanders AD et al (2012) DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. Nat Methods 9(11):1107–1112

    Article  CAS  Google Scholar 

  • Fiegler H, Geigl JB, Langer S, Rigler D, Porter K, Unger K et al (2007) High resolution array-CGH analysis of single cells. Nucleic Acids Res 35(3):e15. PMCID: PMC1807964

    Article  Google Scholar 

  • Forsberg LA, Rasi C, Razzaghian HR, Pakalapati G, Waite L, Thilbeault KS et al (2012) Age-related somatic structural changes in the nuclear genome of human blood cells. Am J Hum Genet 90(2):217–228. PMCID: PMC3276669

    Article  CAS  Google Scholar 

  • Freed D, Pevsner J (2016) The contribution of mosaic variants to autism spectrum disorder. Bucan M (ed). PLoS Genet 12(9):e1006245. PMCID: PMC5024993

    Google Scholar 

  • Fu Y, Li C, Lu S, Zhou W, Tang F, Xie XS et al (2015) Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc Natl Acad Sci USA 112(38):11923–11928. PMCID: PMC4586872

    Article  CAS  Google Scholar 

  • Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17(3):175–188

    Article  CAS  Google Scholar 

  • Gole J, Gore A, Richards A, Chiu Y-J, Fung H-L, Bushman D et al (2013) Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat Biotechnol 31(12):1126–1132. PMCID: PMC3875318

    Article  CAS  Google Scholar 

  • Hazen JL, Faust GG, Rodriguez AR, Ferguson WC, Shumilina S, Clark RA et al (2016) The complete genome sequences, unique mutational spectra, and developmental potency of adult neurons revealed by cloning. Neuron 89(6):1223–1236. PMCID: PMC4795965

    Article  CAS  Google Scholar 

  • Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610. PMCID: PMC3216358

    Article  CAS  Google Scholar 

  • Hutchison CA, Smith HO, Pfannkoch C, Venter JC (2005) Cell-free cloning using φ29 DNA polymerase. Proc Natl Acad Sci USA 102(48):17332–17336

    Article  CAS  Google Scholar 

  • Ikehata H, Ono T (2011) The mechanisms of UV mutagenesis. J Radiat Res 52(2):115–125

    Article  CAS  Google Scholar 

  • Inoue J, Shigemori Y, Mikawa T (2006) Improvements of rolling circle amplification (RCA) efficiency and accuracy using Thermus thermophilus SSB mutant protein. Nucleic Acids Res 34(9):e69

    Article  Google Scholar 

  • Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodríguez-Santiago B et al (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44(6):651–658. PMCID: PMC3372921

    Google Scholar 

  • Jones KT (2008) Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. Hum Reprod Update 14(2):143–158

    Article  CAS  Google Scholar 

  • Ju YS, Martincorena I, Gerstung M, Petljak M, Alexandrov LB, Rahbari R et al (2017) Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature 22(6):216

    Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821

    Article  CAS  Google Scholar 

  • Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, et al (2018) Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods. Nature Publishing Group 15(8):591–594

    Article  CAS  Google Scholar 

  • Kitzman JO (2016) Haplotypes drop by drop. Nat Biotechnol 34(3):296–298

    Article  CAS  Google Scholar 

  • Knouse KA, Wu J, Whittaker CA, Amon A (2014) Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci USA 111(37):13409–13414. PMCID: PMC4169915

    Article  CAS  Google Scholar 

  • Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22(3):568–576. PMCID: PMC3290792

    Article  CAS  Google Scholar 

  • Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang Z et al (2009) PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol 10(2):R23. PMCID: PMC2688268

    Google Scholar 

  • Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF et al (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318(5849):420–426

    Article  CAS  Google Scholar 

  • Kunkel TA (2004) DNA replication fidelity. J Biol Chem 279(17):16895–16898

    Article  CAS  Google Scholar 

  • Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA 79(14):4381–4385. PMCID: PMC346675

    Article  CAS  Google Scholar 

  • Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP et al (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44(6):642–650. PMCID: PMC3366033

    Google Scholar 

  • Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218. PMCID: PMC3919509

    Article  CAS  Google Scholar 

  • Le Caignec C, Spits C, Sermon K, De Rycke M, Thienpont B, Debrock S et al (206) Single-cell chromosomal imbalances detection by array CGH. Nucleic Acids Res 34(9):e68. PMCID: PMC3303179

    Google Scholar 

  • Leung ML, Wang Y, Waters J, Navin NE (2015) SNES: single nucleus exome sequencing. Genome Biol 16(1):55. PMCID: PMC4373516

    Google Scholar 

  • Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, Kwon M et al (2018) Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359(6375):555–559. PMCID: PMC5831169

    Article  Google Scholar 

  • Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A et al (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350(6256):94–98. PMCID: PMC4664477

    Article  CAS  Google Scholar 

  • Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP, Halpern AL et al (2007) Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet 3(9):e155

    Article  Google Scholar 

  • Maretty L, Jensen JM, Petersen B, Sibbesen JA, Liu S, Villesen P et al (2017) Sequencing and de novo assembly of 150 genomes from Denmark as a population reference. Nature 548(7665):87–91

    Google Scholar 

  • Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880–886. PMCID: PMC4471149

    Article  CAS  Google Scholar 

  • McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C et al (2013) Mosaic copy number variation in human neurons. Science 342(6158):632–637. PMCID: PMC3975283

    Article  CAS  Google Scholar 

  • Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X et al (2012) Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151(7):1431–1442. PMCID: PMC3712641

    Article  CAS  Google Scholar 

  • Milholland B, Auton A, Suh Y, Vijg J (2015) Age-related somatic mutations in the cancer genome. Oncotarget 6(28):24627–24635. PMCID: PMC4694783

    Google Scholar 

  • Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J (2017) Differences between germline and somatic mutation rates in humans and mice. Nat Commun 8:15183. PMCID: PMC5436103

    Google Scholar 

  • Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94

    Article  CAS  Google Scholar 

  • O’Connor C (2008) Karyotyping for chromosomal abnormalities. Nat Educ 1(1):27

    Google Scholar 

  • O’Huallachain M, Karczewski KJ, Weissman SM, Urban AE, Snyder MP (2012) Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci USA 109(44):18018–18023. PMCID: PMC3497787

    Article  CAS  Google Scholar 

  • O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1):D733–D745. PMCID: PMC4702849

    Google Scholar 

  • Pan X, Urban AE, Palejev D, Schulz V, Grubert F, Hu Y et al (2008) A procedure for highly specific, sensitive, and unbiased whole-genome amplification. Proc Natl Acad Sci USA 105(40):15499–15504. PMCID: PMC2563063

    Article  CAS  Google Scholar 

  • Picher ÁJ, Budeus B, Wafzig O, Krüger C, García-Gómez S, Martínez-Jiménez MI et al (2016) TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol. Nat Commun 7:13296. PMCID: PMC5141293

    Google Scholar 

  • Podolskiy DI, Lobanov AV, Kryukov GV, Gladyshev VN (2016) Analysis of cancer genomes reveals basic features of human aging and its role in cancer development. Nat Commun. Nature Publishing Group 7:12157. PMCID: PMC4990632

    Google Scholar 

  • Rahbari R, Wuster A, Lindsay SJ, Hardwick RJ, Alexandrov LB, Turki Al S et al (2016) Timing, rates and spectra of human germline mutation. Nat Genet 48(2):126–133. PMCID: PMC4731925

    Article  Google Scholar 

  • Ramsey MJ, Moore DH, Briner JF, Lee DA, Olsen LA, Senft JR et al (1995) The effects of age and lifestyle factors on the accumulation of cytogenetic damage as measured by chromosome painting. Mutat Res 338(1–6):95–106

    Article  CAS  Google Scholar 

  • Saini N, Roberts SA, Klimczak LJ, Chan K, Grimm SA, Dai S et al (2016) The impact of environmental and endogenous damage on somatic mutation load in human skin fibroblasts. Taylor M (ed). PLoS Genet 12(10):e1006385. PMCID: PMC5082821

    Google Scholar 

  • Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273(5274):494–497

    Article  Google Scholar 

  • Shen J-C, Rideout WM III, Jones PA (1994) The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res 22(6):972–976

    Article  CAS  Google Scholar 

  • Solyom S, Kazazian HH (2012) Mobile elements in the human genome: implications for disease. Genome Med 4(2):12. PMCID: PMC3392758

    Google Scholar 

  • Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13(3):718–725

    Article  CAS  Google Scholar 

  • Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci USA 110(6):1999–2004. PMCID: PMC3568331

    Article  CAS  Google Scholar 

  • van den Bos H, Spierings DCJ, Taudt A, Bakker B, Porubský D, Falconer E et al (2016) Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer’s disease neurons. Genome Biol 17(1):116

    Article  Google Scholar 

  • Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C et al (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15(5):577–583

    Article  CAS  Google Scholar 

  • Wala JA, Bandopadhayay P, Greenwald NF, O’Rourke R, Sharpe T, Stewart C, et al (2018) SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res. Cold Spring Harbor Lab 28(4):581–591. PMCID: PMC5880247

    Article  CAS  Google Scholar 

  • Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280(5366):1077–1082

    Article  CAS  Google Scholar 

  • Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512(7513):155–160. PMCID: PMC4158312

    Article  CAS  Google Scholar 

  • Yuen RKC, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B, Patel RV et al (2017) Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci 20(4):602–611. PMCID: PMC5501701

    Google Scholar 

  • Yurov YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI et al (2007) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS ONE 2(6):e558. PMCID: PMC1891435

    Article  Google Scholar 

  • Zafar H, Wang Y, Nakhleh L, Navin N, Chen K (2016) Monovar: single-nucleotide variant detection in single cells. Nat Methods 13(6):505–507. PMCID: PMC4887298

    Article  CAS  Google Scholar 

  • Zhou B, Haney MS, Zhu X, Pattni R, Abyzov A, Urban AE (2018) Detection and quantification of mosaic genomic DNA variation in primary somatic tissues using ddPCR: analysis of mosaic transposable-element insertions, copy-number variants, and single-nucleotide variants. Methods Mol Biol 1768:173–190

    Article  CAS  Google Scholar 

  • Zong C, Lu S, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shobana Sekar for useful discussions during the course of writing and help in preparing the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexej Abyzov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abyzov, A., Vaccarino, F.M., Urban, A.E., Sarangi, V. (2019). Approaches and Methods for Variant Analysis in the Genome of a Single Cell. In: Moskalev, A. (eds) Biomarkers of Human Aging. Healthy Ageing and Longevity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-24970-0_14

Download citation

Publish with us

Policies and ethics