Advertisement

Nutrigenomics as a Strategy for Neuronal Health

  • Elisabetta Damiani
  • Rosita GabbianelliEmail author
Chapter
Part of the Healthy Ageing and Longevity book series (HAL, volume 9)

Abstract

Nutrigenomics through gene expression and epigenetic remodeling can program adult health. Diet during pregnancy and lactation (the first 1000 days of life) can modulate offspring’s epigenome leading to tissue specific variations during cell differentiation processes, and may define epigenetic marks associated with long-term effects on offspring neuronal health. Being epigenetics reversible, a healthy diet represents a fundamental opportunity, even after the first 1000 days of life, for maintaining cellular homeostasis. The positive impact of food (i.e. maternal milk, oily fish, fruit and vegetables, curcumin, tea) with its dietary flavonoids (i.e. sulforaphane, quercetin, lutein, resveratrol, carotenoids) and other bioactive compounds (i.e. docosahexanoic acid, melatonin etc.), will be reflected on chromatin structure modulation and DNA methylation which are associated with switching on/off of genes. An anti-inflammatory diet during early-life and across the whole life may represent a key strategy for influencing brain plasticity and for building an “epigenetic memory” useful in developing neuronal resilience against early-life stressors and to prevent age-related neurodegeneration.

Keywords

Epigenetic programming Brain plasticity Nutrigenomics Neuronal resilience Adult health Anti-inflammatory diet 

References

  1. Agrawal R, Tyagi E, Vergnes L, Reue K, Gomez-Pinilla F (2014) Coupling energy homeostasis with a mechanism to support plasticity in brain trauma. Biochim Biophys Acta 1842:535–546PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agrawal R, Noble E, Vergnes L, Ying Z, Reue K, Gomez-Pinilla F (2016) Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 36:941–953CrossRefGoogle Scholar
  3. Alam R, Abdolmaleky HM, Zhou JR (2017) Microbiome, inflammation, epigenetic alterations, and mental diseases. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 174:651–660CrossRefGoogle Scholar
  4. Bailey LB (2000) New standard for dietary folate intake in pregnant women. Am J Clin Nutr 71:1304S–1307SPubMedCrossRefPubMedCentralGoogle Scholar
  5. Bateson P, Gluckman P, Hanson M (2014) The biology of developmental plasticity and the predictive adaptive response hypothesis. J Physiol 592:2357–2368PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bavithra S, Selvakumar K, Sundareswaran L, Arunakaran J (2017) Neuroprotective effect of melatonin against PCBs induced behavioural, molecular and histological changes in cerebral cortex of adult male wistar rats. Neurochem Res 42:428–438PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bekdash RA (2018) Choline, the brain and neurodegeneration: insights from epigenetics. Front Biosci 23:1113–1143CrossRefGoogle Scholar
  8. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bhatia HS, Agrawal R, Sharma S, Huo YX, Ying Z, Gomez-Pinilla F (2011) Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood. PLoS ONE 6:e28451PubMedPubMedCentralCrossRefGoogle Scholar
  10. Binns C, Lee M, Low WY (2016) The long-term public health benefits of breastfeeding. Asia Pac J Public Health 28:7–14PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bordoni L, Nasuti C, Mirto M, Caradonna F, Gabbianelli R (2015) Intergenerational effect of early life exposure to permethrin: changes in global DNA methylation and in nurr1 gene expression. Toxics 3:451–461PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bouvy-Liivrand M, Hernandez de Sande A, Polonen P, Mehtonen J, Vuorenmaa T, Niskanen H, Sinkkonen L, Kaikkonen MU, Heinaniemi M (2017) Analysis of primary microRNA loci from nascent transcriptomes reveals regulatory domains governed by chromatin architecture. Nucleic Acids Res 45:12054PubMedPubMedCentralCrossRefGoogle Scholar
  13. Castelli V, Grassi D, Bocale R, d’Angelo M, Antonosante A, Cimini A, Ferri C, Desideri G (2018) Diet and brain health: which role for polyphenols? Curr Pharm Des 24:227–238PubMedCrossRefPubMedCentralGoogle Scholar
  14. Choi JK (2010) Contrasting chromatin organization of CpG islands and exons in the human genome. Genome Biol 11:R70PubMedPubMedCentralCrossRefGoogle Scholar
  15. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673PubMedCrossRefPubMedCentralGoogle Scholar
  16. Codagnone MG, Spichak S, O’Mahony SM, O’Leary OF, Clarke G, Stanton C, Dinan TG, Cryan JF (2018) Programming bugs: microbiota and the developmental origins of brain health and disease. Biol PsychiatryGoogle Scholar
  17. Collado MC, Laitinen K, Salminen S, Isolauri E (2012) Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res 72:77–85PubMedCrossRefPubMedCentralGoogle Scholar
  18. Contu L, Hawkes CA (2017) A review of the impact of maternal obesity on the cognitive function and mental health of the offspring. Int J Mol Sci 18Google Scholar
  19. Corpas R, Grinan-Ferre C, Palomera-Avalos V, Porquet D, Garcia de Frutos P, Franciscato Cozzolino SM, Rodriguez-Farre E, Pallas M, Sanfeliu C, Cardoso BR (2018a) Melatonin induces mechanisms of brain resilience against neurodegeneration. J Pineal Res 65:e12515PubMedCrossRefPubMedCentralGoogle Scholar
  20. Corpas R, Grinan-Ferre C, Rodriguez-Farre E, Pallas M, Sanfeliu C (2018b) Resveratrol induces brain resilience against Alzheimer neurodegeneration through proteostasis enhancement. Mol NeurobiolGoogle Scholar
  21. Di Martino RMC, Bisi A, Rampa A, Gobbi S, Belluti F (2017) Recent progress on curcumin-based therapeutics: a patent review (2012–2016). Part II: Curcumin derivatives in cancer and neurodegeneration. Expert Opin Ther Pat 27:953–965PubMedCrossRefGoogle Scholar
  22. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052PubMedCrossRefGoogle Scholar
  23. Ding ML, Ma H, Man YG, Lv HY (2017) Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3 K/Akt/mTOR signalling pathways in neonatal mice. Can J Physiol Pharmacol 95:1396–1405PubMedCrossRefGoogle Scholar
  24. Dolinoy DC (2008) The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 66(Suppl 1):S7–11PubMedPubMedCentralCrossRefGoogle Scholar
  25. Elumalai P, Lakshmi S (2016) Role of Quercetin Benefits in Neurodegeneration. Adv Neurobiol 12:229–245PubMedCrossRefGoogle Scholar
  26. Faa G, Manchia M, Pintus R, Gerosa C, Marcialis MA, Fanos V (2016) Fetal programming of neuropsychiatric disorders. Birth Defects Res Part C Embryo Today Rev 108:207–223CrossRefGoogle Scholar
  27. Fedeli D, Montani M, Bordoni L, Galeazzi R, Nasuti C, Correia-Sa L, Domingues VF, Jayant M, Brahmachari V, Massaccesi L, Laudadio E, Gabbianelli R (2017) In vivo and in silico studies to identify mechanisms associated with Nurr1 modulation following early life exposure to permethrin in rats. Neuroscience 340:411–423PubMedCrossRefGoogle Scholar
  28. Florent-Bechard S, Desbene C, Garcia P, Allouche A, Youssef I, Escanye MC, Koziel V, Hanse M, Malaplate-Armand C, Stenger C, Kriem B, Yen-Potin FT, Olivier JL, Pillot T, Oster T (2009) The essential role of lipids in Alzheimer’s disease. Biochimie 91:804–809PubMedCrossRefGoogle Scholar
  29. Fuemmeler BF, Lee CT, Soubry A, Iversen ES, Huang Z, Murtha AP, Schildkraut JM, Jirtle RL, Murphy SK, Hoyo C (2016) DNA methylation of regulatory regions of imprinted genes at birth and its relation to infant temperament. Genet Epigenetics 8:59–67Google Scholar
  30. Gabbianelli R, Damiani E (2018) Epigenetics and neurodegeneration: role of early-life nutrition. J Nutr Biochem 57:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gerber H, Wu F, Dimitrov M, Garcia Osuna GM, Fraering PC (2017) Zinc and Copper differentially modulate amyloid precursor protein processing by gamma-secretase and amyloid-beta peptide production. J Biol Chem 292:3751–3767PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gomez-Pinilla F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9:568–578PubMedPubMedCentralCrossRefGoogle Scholar
  33. Graciarena M, Roca V, Mathieu P, Depino AM, Pitossi FJ (2013) Differential vulnerability of adult neurogenesis by adult and prenatal inflammation: role of TGF-beta1. Brain Behav Immun 34:17–28PubMedCrossRefPubMedCentralGoogle Scholar
  34. Grissom NM, George R, Reyes TM (2017) Suboptimal nutrition in early life affects the inflammatory gene expression profile and behavioral responses to stressors. Brain Behav Immun 63:115–126PubMedCrossRefGoogle Scholar
  35. Gueant JL, Namour F, Gueant-Rodriguez RM, Daval JL (2013) Folate and fetal programming: a play in epigenomics? Trends Endocrinol Metab TEM 24:279–289PubMedCrossRefPubMedCentralGoogle Scholar
  36. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hodge DR, Peng B, Cherry JC, Hurt EM, Fox SD, Kelley JA, Munroe DJ, Farrar WL (2005) Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res 65:4673–4682PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hu C, Wang P, Zhang S, Ren L, Lv Y, Yin R, Bi J (2017) Neuroprotective effect of melatonin on soluble Abeta1-42-induced cortical neurodegeneration via Reelin-Dab1 signaling pathway. Neurol Res 39:621–631PubMedCrossRefGoogle Scholar
  39. Jiang Y, Denbow C, Meiri N, Denbow DM (2016) Epigenetic-imprinting changes caused by neonatal fasting stress protect from future fasting stress. J Neuroendocrinol 28CrossRefGoogle Scholar
  40. Keen CL, Hanna LA, Lanoue L, Uriu-Adams JY, Rucker RB, Clegg MS (2003) Developmental consequences of trace mineral deficiencies in rodents: acute and long-term effects. J Nutr 133:1477S–1480SPubMedCrossRefPubMedCentralGoogle Scholar
  41. Kopp B, Zalko D, Audebert M (2018) Genotoxicity of 11 heavy metals detected as food contaminants in two human cell lines. Environ Mol Mutagen 59:202–210PubMedCrossRefPubMedCentralGoogle Scholar
  42. Koushki M, Dashatan NA, Meshkani R (2018) Effect of resveratrol supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Clin Ther 40(1180–1192):e1185Google Scholar
  43. Lemas DJ, Young BE, Baker PR 2nd, Tomczik AC, Soderborg TK, Hernandez TL, de la Houssaye BA, Robertson CE, Rudolph MC, Ir D, Patinkin ZW, Krebs NF, Santorico SA, Weir T, Barbour LA, Frank DN, Friedman JE (2016) Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome. Am J Clin Nutr 103:1291–1300PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lepping RJ, Honea RA, Martin LE, Liao K, Choi IY, Lee P, Papa VB, Brooks WM, Shaddy DJ, Carlson SE, Colombo J, Gustafson KM (2018) Long-chain polyunsaturated fatty acid supplementation in the first year of life affects brain function, structure, and metabolism at age nine years. Dev PsychobiolGoogle Scholar
  45. Li M, Reynolds CM, Sloboda DM, Gray C, Vickers MH (2015) Maternal taurine supplementation attenuates maternal fructose-induced metabolic and inflammatory dysregulation and partially reverses adverse metabolic programming in offspring. J Nutr Biochem 26:267–276PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lieblein-Boff JC, Johnson EJ, Kennedy AD, Lai CS, Kuchan MJ (2015) Exploratory metabolomic analyses reveal compounds correlated with lutein concentration in frontal cortex, hippocampus, and occipital cortex of human infant brain. PLoS ONE 10:e0136904PubMedPubMedCentralCrossRefGoogle Scholar
  47. London L, Beseler C, Bouchard MF, Bellinger DC, Colosio C, Grandjean P, Harari R, Kootbodien T, Kromhout H, Little F, Meijster T, Moretto A, Rohlman DS, Stallones L (2012) Neurobehavioral and neurodevelopmental effects of pesticide exposures. Neurotoxicology 33:887–896PubMedPubMedCentralCrossRefGoogle Scholar
  48. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lukiw WJ (2010) Evidence supporting a biological role for aluminium in brain chromatin compaction and epigenetics. J Inorg BiochemGoogle Scholar
  50. Luo S, Monterosso JR, Sarpelleh K, Page KA (2015) Differential effects of fructose versus glucose on brain and appetitive responses to food cues and decisions for food rewards. Proc Natl Acad Sci USA 112:6509–6514PubMedCrossRefPubMedCentralGoogle Scholar
  51. Martin R, Heilig HG, Zoetendal EG, Jimenez E, Fernandez L, Smidt H, Rodriguez JM (2007) Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol 158:31–37PubMedCrossRefPubMedCentralGoogle Scholar
  52. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348PubMedPubMedCentralCrossRefGoogle Scholar
  53. McNeill E, Van Vactor D (2012) MicroRNAs shape the neuronal landscape. Neuron 75:363–379PubMedPubMedCentralCrossRefGoogle Scholar
  54. McStay CL, Prescott SL, Bower C, Palmer DJ (2017) Maternal folic acid supplementation during pregnancy and childhood allergic disease outcomes: a question of timing? Nutrients 9Google Scholar
  55. Modgil S, Lahiri DK, Sharma VL, Anand A (2014) Role of early life exposure and environment on neurodegeneration: implications on brain disorders. Transl Neurodegener 3:9PubMedPubMedCentralCrossRefGoogle Scholar
  56. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 38:23–38PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mulak A, Bonaz B (2015) Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol 21:10609–10620PubMedPubMedCentralCrossRefGoogle Scholar
  58. Mullan K, Cardwell CR, McGuinness B, Woodside JV, McKay GJ (2018) Plasma antioxidant status in patients with Alzheimer’s disease and cognitively intact elderly: a meta-analysis of case-control studies. J Alzheimer’s Dis JAD 62:305–317CrossRefGoogle Scholar
  59. Mulligan CM, Friedman JE (2017) Maternal modifiers of the infant gut microbiota: metabolic consequences. J Endocrinol 235:R1–R12PubMedPubMedCentralCrossRefGoogle Scholar
  60. Nardelli C, Iaffaldano L, Ferrigno M, Labruna G, Maruotti GM, Quaglia F, Capobianco V, Di Noto R, Del Vecchio L, Martinelli P, Pastore L, Sacchetti L (2014) Characterization and predicted role of the microRNA expression profile in amnion from obese pregnant women. Int J Obes 38:466–469CrossRefGoogle Scholar
  61. Nasuti C, Coman MM, Olek RA, Fiorini D, Verdenelli MC, Cecchini C, Silvi S, Fedeli D, Gabbianelli R (2016) Changes on fecal microbiota in rats exposed to permethrin during postnatal development. Environ Sci Pollut Res Int 23:10930–10937PubMedCrossRefPubMedCentralGoogle Scholar
  62. Nasuti C, Brunori G, Eusepi P, Marinelli L, Ciccocioppo R, Gabbianelli R (2017) Early life exposure to permethrin: a progressive animal model of Parkinson’s disease. J Pharmacol Toxicol Methods 83:80–86PubMedCrossRefPubMedCentralGoogle Scholar
  63. Natale G, Pasquali L, Ruggieri S, Paparelli A, Fornai F (2008) Parkinson’s disease and the gut: a well known clinical association in need of an effective cure and explanation. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc 20:741–749CrossRefGoogle Scholar
  64. Nica DV, Popescu C, Draghici GA, Andrica FM, Privistirescu IA, Gergen II, Stoger R (2017) High-level dietary cadmium exposure is associated with global DNA hypermethylation in the gastropod hepatopancreas. PLoS ONE 12:e0184221PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nikolaus S, Schulte B, Al-Massad N, Thieme F, Schulte DM, Bethge J, Rehman A, Tran F, Aden K, Hasler R, Moll N, Schutze G, Schwarz MJ, Waetzig GH, Rosenstiel P, Krawczak M, Szymczak S, Schreiber S (2017) Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology 153(1504–1516):e1502Google Scholar
  66. Nomura Y, Lambertini L, Rialdi A, Lee M, Mystal EY, Grabie M, Manaster I, Huynh N, Finik J, Davey M, Davey K, Ly J, Stone J, Loudon H, Eglinton G, Hurd Y, Newcorn JH, Chen J (2014) Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci 21:131–137PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pasricha SR, Lim PJ, Duarte TL, Casu C, Oosterhuis D, Mleczko-Sanecka K, Suciu M, Da Silva AR, Al-Hourani K, Arezes J, McHugh K, Gooding S, Frost JN, Wray K, Santos A, Porto G, Repapi E, Gray N, Draper SJ, Ashley N, Soilleux E, Olinga P, Muckenthaler MU, Hughes JR, Rivella S, Milne TA, Armitage AE, Drakesmith H (2017) Hepcidin is regulated by promoter-associated histone acetylation and HDAC3. Nat Commun 8:403PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pennisi M, Crupi R, Di Paola R, Ontario ML, Bella R, Calabrese EJ, Crea R, Cuzzocrea S, Calabrese V (2017) Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J Neurosci Res 95:1360–1372PubMedCrossRefPubMedCentralGoogle Scholar
  69. Qin WS, Deng YH, Cui FC (2016) Sulforaphane protects against acrolein-induced oxidative stress and inflammatory responses: modulation of Nrf-2 and COX-2 expression. Arch Med Sci 12:871–880PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ramsay M (2010) Genetic and epigenetic insights into fetal alcohol spectrum disorders. Genome Med 2:27PubMedPubMedCentralCrossRefGoogle Scholar
  71. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6:306–314PubMedCrossRefPubMedCentralGoogle Scholar
  72. Roser AE, Caldi Gomes L, Schunemann J, Maass F, Lingor P (2018) Circulating miRNAs as diagnostic biomarkers for parkinson’s disease. Front Neurosci 12:625PubMedPubMedCentralCrossRefGoogle Scholar
  73. Roytio H, Mokkala K, Vahlberg T, Laitinen K (2017) Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women. Br J Nutr 118:343–352PubMedCrossRefPubMedCentralGoogle Scholar
  74. Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ (2012) Neurobiology of resilience. Nat Neurosci 15:1475–1484PubMedPubMedCentralCrossRefGoogle Scholar
  75. Rutayisire E, Huang K, Liu Y, Tao F (2016) The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol 16:86PubMedPubMedCentralCrossRefGoogle Scholar
  76. Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, Marti-Romero M, Lopez RM, Florido J, Campoy C, Sanz Y (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104:83–92PubMedCrossRefPubMedCentralGoogle Scholar
  77. Schachtschneider KM, Liu Y, Rund LA, Madsen O, Johnson RW, Groenen MA, Schook LB (2016) Impact of neonatal iron deficiency on hippocampal DNA methylation and gene transcription in a porcine biomedical model of cognitive development. BMC Genom 17:856CrossRefGoogle Scholar
  78. Shiina A, Kanahara N, Sasaki T, Oda Y, Hashimoto T, Hasegawa T, Yoshida T, Iyo M, Hashimoto K (2015) An open study of sulforaphane-rich broccoli sprout extract in patients with schizophrenia. Psychopharmacol Neurosci Off Sci J Korean Coll Neuropsychopharmacol 13:62–67Google Scholar
  79. Slotkin TA, Skavicus S, Stapleton HM, Seidler FJ (2017) Brominated and organophosphate flame retardants target different neurodevelopmental stages, characterized with embryonic neural stem cells and neuronotypic PC12 cells. Toxicology 390:32–42PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sonnenburg JL, Backhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535:56–64PubMedPubMedCentralCrossRefGoogle Scholar
  81. Stanhope KL (2016) Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci 53:52–67PubMedCrossRefPubMedCentralGoogle Scholar
  82. Tanner CM, Goldman SM, Ross GW, Grate SJ (2014) The disease intersection of susceptibility and exposure: chemical exposures and neurodegenerative disease risk. Alzheimer’s Dement J Alzheimer’s Assoc 10:S213–225CrossRefGoogle Scholar
  83. Tarozzi A, Angeloni C, Malaguti M, Morroni F, Hrelia S, Hrelia P (2013) Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxidative Med Cell Longev 2013:415078CrossRefGoogle Scholar
  84. Tartaglione AM, Venerosi A, Calamandrei G (2016) Early-life toxic insults and onset of sporadic neurodegenerative diseases—an overview of experimental studies. Curr Top Behav Neurosci 29:231–264PubMedCrossRefPubMedCentralGoogle Scholar
  85. Tilg H, Moschen AR (2015) Food, immunity, and the microbiome. Gastroenterology 148:1107–1119PubMedCrossRefPubMedCentralGoogle Scholar
  86. Toop CR, Muhlhausler BS, O’Dea K, Gentili S (2017) Impact of perinatal exposure to sucrose or high fructose corn syrup (HFCS-55) on adiposity and hepatic lipid composition in rat offspring. J Physiol 595:4379–4398PubMedPubMedCentralCrossRefGoogle Scholar
  87. Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E (2017) The gut microbiome in human neurological disease: a review. Ann Neurol 81:369–382PubMedCrossRefPubMedCentralGoogle Scholar
  88. Tyagi E, Zhuang Y, Agrawal R, Ying Z, Gomez-Pinilla F (2015) Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiol Dis 73:307–318PubMedCrossRefPubMedCentralGoogle Scholar
  89. Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK (2014) Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9:2124–2138PubMedPubMedCentralCrossRefGoogle Scholar
  90. Valenzuela-Melgarejo FJ, Caro-Diaz C, Cabello-Guzman G (2018) Potential crosstalk between fructose and melatonin: a new role of melatonin-inhibiting the metabolic effects of fructose. Int J Endocrinol 2018:7515767PubMedPubMedCentralCrossRefGoogle Scholar
  91. Veenendaal MV, Painter RC, de Rooij SR, Bossuyt PM, van der Post JA, Gluckman PD, Hanson MA, Roseboom TJ (2013) Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG: Int J Obstet Gynaecol 120:548–553CrossRefGoogle Scholar
  92. Viel JF, Warembourg C, Le Maner-Idrissi G, Lacroix A, Limon G, Rouget F, Monfort C, Durand G, Cordier S, Chevrier C (2015) Pyrethroid insecticide exposure and cognitive developmental disabilities in children: the PELAGIE mother-child cohort. Environ Int 82:69–75PubMedCrossRefPubMedCentralGoogle Scholar
  93. Visentin S, Lapolla A, Londero AP, Cosma C, Dalfra M, Camerin M, Faggian D, Plebani M, Cosmi E (2014) Adiponectin levels are reduced while markers of systemic inflammation and aortic remodelling are increased in intrauterine growth restricted mother-child couple. Biomed Res Int 2014:401595PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wang W, Kwon EJ, Tsai LH (2012) MicroRNAs in learning, memory, and neurological diseases. Learn Mem 19:359–368PubMedCrossRefPubMedCentralGoogle Scholar
  95. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300PubMedPubMedCentralCrossRefGoogle Scholar
  96. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854PubMedCrossRefPubMedCentralGoogle Scholar
  97. Weiser MJ, Butt CM, Mohajeri MH (2016) Docosahexaenoic acid and cognition throughout the lifespan. Nutrients 8:99PubMedPubMedCentralCrossRefGoogle Scholar
  98. Xie L, Zhang K, Rasmussen D, Wang J, Wu D, Roemmich JN, Bundy A, Johnson WT, Claycombe K (2017) Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring. PLoS ONE 12:e0169581PubMedPubMedCentralCrossRefGoogle Scholar
  99. Xu Q, Langley M, Kanthasamy AG, Reddy MB (2017) Epigallocatechin gallate has a neurorescue effect in a mouse model of parkinson disease. J Nutr 147:1926–1931PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yao W, Zhang JC, Ishima T, Dong C, Yang C, Ren Q, Ma M, Han M, Wu J, Suganuma H, Ushida Y, Yamamoto M, Hashimoto K (2016) Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice. Sci Rep 6:30659PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zeisel SH (2009) Importance of methyl donors during reproduction. Am J Clin Nutr 89:673S–677SPubMedCrossRefGoogle Scholar
  102. Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M, Inohara N, Nunez G (2016) Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44:647–658PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zhang J, Zhang R, Zhan Z, Li X, Zhou F, Xing A, Jiang C, Chen Y, An L (2017) Beneficial effects of sulforaphane treatment in Alzheimer’s disease may be mediated through reduced HDAC1/3 and increased P75NTR expression. Front Aging Neurosci 9:121PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Life and Environmental SciencesPolytechnic University of the MarcheAnconaItaly
  2. 2.Unit of Molecular Biology, School of PharmacyUniversity of CamerinoCamerinoItaly

Personalised recommendations