Advertisement

The Developmental Origins of Osteoporosis

  • Clare Shere
  • Cyrus Cooper
  • Elaine M. DennisonEmail author
Chapter
Part of the Healthy Ageing and Longevity book series (HAL, volume 9)

Abstract

Osteoporosis is a disease characterised by poor bone strength and microarchitecture, causing bone fragility, which leads to an increased risk of fractures. Although primarily seen as a disease of old age, evidence is accumulating that in utero and early life environment can set an individual on a trajectory for osteoporosis and fragility fracture in later life. The development of osteoporosis is dependent on peak bone mass, and the subsequent rate of loss. The peak bone mass achieved by the third decade of life has been shown to be a powerful predictor of osteoporosis; although peak bone mass is partly genetically determined, the remaining majority contribution is attributable to environmental exposures in early life and modifiable lifestyle factors through life. Current osteoporosis management focuses on bone loss later in life, but it is important to consider strategies earlier in the lifecourse. This review will focus on events operating in utero, or early in post-natal life that influence bone health of the individual.

Keywords

Developmental origin Osteoporosis Early life environment Peak bone mass Fragility fracture 

References

  1. Abrahamsen B, Heitmann BL, Eiken PA (2012) Season of birth and the risk of hip fracture in danish men and women aged 65+. Front Endocrinol (Lausanne) 3:2CrossRefGoogle Scholar
  2. Alexander BT, Henry Dasinger J, Intapad S (2014) Effect of low birth weight on women’s health. Clin Ther 36(12):1913–1923PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amundson LA, Hernandez LL, Laporta J, Crenshaw TD (2016) Maternal dietary vitamin D carry-over alters offspring growth, skeletal mineralisation and tissue mRNA expressions of genes related to vitamin D, calcium and phosphorus homoeostasis in swine. Br J Nutr 116(5):774–787PubMedCrossRefPubMedCentralGoogle Scholar
  4. Andraos S, de Seymour JV, O’Sullivan JM, Kussmann M (2018) The impact of nutritional interventions in pregnant women on DNA methylation patterns of the offspring: a systematic review. Mol Nutr Food Res e1800034Google Scholar
  5. Antoniades L, MacGregor AJ, Andrew T, Spector TD (2003) Association of birth weight with osteoporosis and osteoarthritis in adult twins. Rheumatology (Oxford) 42(6):791–796CrossRefGoogle Scholar
  6. Baird J, Kurshid MA, Kim M, Harvey N, Dennison E, Cooper C (2011) Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis. Osteoporos Int 22(5):1323–1334PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barker DJ (1995) Fetal origins of coronary heart disease. BMJ 311(6998):171–174PubMedPubMedCentralCrossRefGoogle Scholar
  8. Boghossian NS, Koo W, Liu A, Mumford SL, Tsai MY, Yeung EH (2018) Longitudinal measures of maternal vitamin D and neonatal body composition. Eur J Clin NutrGoogle Scholar
  9. Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G et al (1997) Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 99(6):1287–1294PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bonjour JP, Chevalley T, Ammann P, Slosman D, Rizzoli R (2001) Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study. Lancet 358(9289):1208–1212CrossRefGoogle Scholar
  11. Borg SA, Buckley H, Owen R, Marin AC, Lu Y, Eyles D et al (2018) Early life vitamin D depletion alters the postnatal response to skeletal loading in growing and mature bone. PLoS ONE 13(1):e0190675PubMedPubMedCentralCrossRefGoogle Scholar
  12. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA (2007) Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 97(3):435–439PubMedPubMedCentralCrossRefGoogle Scholar
  13. Byberg L, Michaelsson K, Goodman A, Zethelius B, Koupil I (2014) Birth weight is not associated with risk of fracture: results from two Swedish cohort studies. J Bone Miner Res 29(10):2152–2160PubMedCrossRefPubMedCentralGoogle Scholar
  14. Callreus M, McGuigan F, Akesson K (2013) Birth weight is more important for peak bone mineral content than for bone density: the PEAK-25 study of 1,061 young adult women. Osteoporos Int 24(4):1347–1355PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen JR, Lazarenko OP, Zhao H, Alund AW, Shankar K (2018) Maternal obesity impairs skeletal development in adult offspring. J EndocrinolGoogle Scholar
  16. Chen JR, Zhang J, Lazarenko OP, Kang P, Blackburn ML, Ronis MJ et al (2012) Inhibition of fetal bone development through epigenetic down-regulation of HoxA10 in obese rats fed high-fat diet. Faseb J 26(3):1131–1141PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen JR, Lazarenko OP, Blackburn ML, Rose S, Frye RE, Badger TM et al (2016) Maternal obesity programs senescence signaling and glucose metabolism in osteo-progenitors from rat and human. Endocrinology 157(11):4172–4183PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chevalley T, Bonjour JP, Ferrari S, Hans D, Rizzoli R (2005) Skeletal site selectivity in the effects of calcium supplementation on areal bone mineral density gain: a randomized, double-blind, placebo-controlled trial in prepubertal boys. J Clin Endocrinol Metab 90(6):3342–3349PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chmurzynska A (2010) Fetal programming: link between early nutrition, DNA methylation, and complex diseases. Nutr Rev 68(2):87–98PubMedCrossRefPubMedCentralGoogle Scholar
  20. Christoffersen T, Ahmed LA, Daltveit AK, Dennison EM, Evensen EK, Furberg AS et al (2017) The influence of birth weight and length on bone mineral density and content in adolescence: The Tromso Study, Fit Futures. Arch Osteoporos 12(1):54PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cole ZA, Gale CR, Javaid MK, Robinson SM, Law C, Boucher BJ et al (2009) Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study. J Bone Miner Res 24(4):663–668PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cooper C, Cawley M, Bhalla A, Egger P, Ring F, Morton L et al (1995) Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res 10(6):940–947PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cooper C, Fall C, Egger P, Hobbs R, Eastell R, Barker D (1997) Growth in infancy and bone mass in later life. Ann Rheum Dis 56(1):17–21PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cooper C, Eriksson JG, Forsen T, Osmond C, Tuomilehto J, Barker DJ (2001) Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int 12(8):623–629PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M (2006) Review: developmental origins of osteoporotic fracture. Osteoporos Int 17(3):337–347PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cooper C, Harvey NC, Bishop NJ, Kennedy S, Papageorghiou AT, Schoenmakers I et al (2016) Maternal gestational vitamin D supplementation and offspring bone health (MAVIDOS): a multicentre, double-blind, randomised placebo-controlled trial. Lancet Diabetes Endocrinol 4(5):393–402PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cooper C, Ferrari S, Mitchell P, Harvey N, Dennison E (2017) IOF compendium of osteoporosis. International Osteoporosis FoundationGoogle Scholar
  28. Curtis EM, Murray R, Titcombe P, Cook E, Clarke-Harris R, Costello P et al (2017) Perinatal DNA methylation at CDKN2A is associated with offspring bone mass: findings from the Southampton Women’s Survey. J Bone Miner Res 32(10):2030–2040PubMedPubMedCentralCrossRefGoogle Scholar
  29. de Bono S, Schoenmakers I, Ceesay M, Mendy M, Laskey MA, Cole TJ et al (2010) Birth weight predicts bone size in young adulthood at cortical sites in men and trabecular sites in women from The Gambia. Bone 46(5):1316–1321PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dennison EM, Arden NK, Keen RW, Syddall H, Day IN, Spector TD et al (2001) Birthweight, vitamin D receptor genotype and the programming of osteoporosis. Paediatr Perinat Epidemiol 15(3):211–219PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dennison EM, Hindmarsh PC, Kellingray S, Fall CH, Cooper C (2003) Growth hormone predicts bone density in elderly women. Bone 32(4):434–440PubMedCrossRefGoogle Scholar
  32. Dennison EM, Syddall HE, Rodriguez S, Voropanov A, Day IN, Cooper C (2004) Polymorphism in the growth hormone gene, weight in infancy, and adult bone mass. J Clin Endocrinol Metab 89(10):4898–4903PubMedCrossRefGoogle Scholar
  33. Dennison EM, Syddall HE, Sayer AA, Gilbody HJ, Cooper C (2005) Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire cohort study. Pediatr Res 57(4):582–586PubMedCrossRefPubMedCentralGoogle Scholar
  34. Devlin MJ, Bouxsein ML (2012) Influence of pre- and peri-natal nutrition on skeletal acquisition and maintenance. Bone 50(2):444–451PubMedCrossRefGoogle Scholar
  35. Dimitri P (2018) Fat and bone in children—where are we now? Ann Pediatr Endocrinol Metab 23(2):62–69PubMedPubMedCentralCrossRefGoogle Scholar
  36. Diogenes ME, Bezerra FF, Rezende EP, Donangelo CM (2015) Calcium plus vitamin D supplementation during the third trimester of pregnancy in adolescents accustomed to low calcium diets does not affect infant bone mass at early lactation in a randomized controlled trial. J Nutr 145(7):1515–1523PubMedCrossRefGoogle Scholar
  37. El Hage R, Moussa E, Hammoud A, Dandachi G, Jacob C (2010) Birth weight is an independent determinant of whole body bone mineral content and bone mineral density in a group of Lebanese adolescent girls. J Bone Miner Metab 28(3):360–363PubMedCrossRefPubMedCentralGoogle Scholar
  38. Elloumi M, Ben Ounis O, Courteix D, Makni E, Sellami S, Tabka Z et al (2009) Long-term rugby practice enhances bone mass and metabolism in relation with physical fitness and playing position. J Bone Miner Metab 27(6):713–720PubMedCrossRefGoogle Scholar
  39. Fall C, Hindmarsh P, Dennison E, Kellingray S, Barker D, Cooper C (1998) Programming of growth hormone secretion and bone mineral density in elderly men: a hypothesis. J Clin Endocrinol Metab 83(1):135–139PubMedPubMedCentralGoogle Scholar
  40. Finch SL, Rauch F, Weiler HA (2010) Postnatal vitamin D supplementation following maternal dietary vitamin D deficiency does not affect bone mass in weanling guinea pigs. J Nutr 140(9):1574–1581PubMedCrossRefPubMedCentralGoogle Scholar
  41. Forestier F, Daffos F, Rainaut M, Bruneau M, Trivin F (1987) Blood chemistry of normal human fetuses at midtrimester of pregnancy. Pediatr Res 21(6):579–583PubMedCrossRefGoogle Scholar
  42. Ganpule A, Yajnik CS, Fall CH, Rao S, Fisher DJ, Kanade A et al (2006) Bone mass in Indian children–relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study. J Clin Endocrinol Metab 91(8):2994–3001PubMedCrossRefPubMedCentralGoogle Scholar
  43. Glendenning P, Ratajczak T, Prince RL, Garamszegi N, Strehler EE (2000) The promoter region of the human PMCA1 gene mediates transcriptional downregulation by 1,25-dihydroxyvitamin D(3). Biochem Biophys Res Commun 277(3):722–728PubMedCrossRefGoogle Scholar
  44. Godfrey K, Walker-Bone K, Robinson S, Taylor P, Shore S, Wheeler T et al (2001) Neonatal bone mass: influence of parental birthweight, maternal smoking, body composition, and activity during pregnancy. J Bone Miner Res 16(9):1694–1703PubMedCrossRefPubMedCentralGoogle Scholar
  45. Haentjens P, Magaziner J, Colon-Emeric CS, Vanderschueren D, Milisen K, Velkeniers B et al (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152(6):380–390PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hannam K, Lawlor DA, Tobias JH (2015) Maternal preeclampsia is associated with reduced adolescent offspring hip BMD in a UK population-based birth cohort. J Bone Miner Res 30(9):1684–1691PubMedPubMedCentralCrossRefGoogle Scholar
  47. Harvey NC, Javaid MK, Poole JR, Taylor P, Robinson SM, Inskip HM et al (2008) Paternal skeletal size predicts intrauterine bone mineral accrual. J Clin Endocrinol Metab 93(5):1676–1681PubMedCrossRefGoogle Scholar
  48. Harvey NC, Mahon PA, Robinson SM, Nisbet CE, Javaid MK, Crozier SR et al (2010a) Different indices of fetal growth predict bone size and volumetric density at 4 years of age. J Bone Miner Res 25(4):920–927PubMedPubMedCentralGoogle Scholar
  49. Harvey NC, Javaid MK, Arden NK, Poole JR, Crozier SR, Robinson SM et al (2010b) Maternal predictors of neonatal bone size and geometry: the Southampton Women’s Survey. J Dev Orig Health Dis 1(1):35–41PubMedPubMedCentralCrossRefGoogle Scholar
  50. Harvey NC, Mahon PA, Kim M, Cole ZA, Robinson SM, Javaid K et al (2012) Intrauterine growth and postnatal skeletal development: findings from the Southampton Women’s Survey. Paediatr Perinat Epidemiol 26(1):34–44PubMedPubMedCentralCrossRefGoogle Scholar
  51. Harvey NC, Sheppard A, Godfrey KM, McLean C, Garratt E, Ntani G et al (2014) Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. J Bone Miner Res 29(3):600–607PubMedPubMedCentralCrossRefGoogle Scholar
  52. Heijmans BT, Tobi EW, Lumey LH, Slagboom PE (2009) The epigenome: archive of the prenatal environment. Epigenetics 4(8):526–531PubMedCrossRefGoogle Scholar
  53. Heppe DH, Medina-Gomez C, Hofman A, Franco OH, Rivadeneira F, Jaddoe VW (2013) Maternal first-trimester diet and childhood bone mass: the Generation R Study. Am J Clin Nutr 98(1):224–232PubMedCrossRefGoogle Scholar
  54. Heppe DH, Medina-Gomez C, de Jongste JC, Raat H, Steegers EA, Hofman A et al (2014) Fetal and childhood growth patterns associated with bone mass in school-age children: the Generation R Study. J Bone Miner Res 29(12):2584–2593PubMedCrossRefGoogle Scholar
  55. Hernandez CJ, Beaupre GS, Carter DR (2003) A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int 14(10):843–847PubMedCrossRefGoogle Scholar
  56. Hoffman DJ, Reynolds RM, Hardy DB (2017) Developmental origins of health and disease: current knowledge and potential mechanisms. Nutr Rev 75(12):951–970PubMedCrossRefGoogle Scholar
  57. Holroyd CR, Harvey NC, Crozier SR, Winder NR, Mahon PA, Ntami G et al (2012) Placental size at 19 weeks predicts offspring bone mass at birth: findings from the Southampton Women’s Survey. Placenta 33(8):623–629PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hughes PC, Tanner JM (1970) The assessment of skeletal maturity in the growing rat. J Anat 106(Pt 2):371–402PubMedPubMedCentralGoogle Scholar
  59. Huncharek M, Muscat J, Kupelnick B (2008) Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone 43(2):312–321PubMedCrossRefGoogle Scholar
  60. Ioannou C, Javaid MK, Mahon P, Yaqub MK, Harvey NC, Godfrey KM et al (2012) The effect of maternal vitamin D concentration on fetal bone. J Clin Endocrinol Metab 97(11):E2070–E2077PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jarjou LM, Prentice A, Sawo Y, Laskey MA, Bennett J, Goldberg GR et al (2006) Randomized, placebo-controlled, calcium supplementation study in pregnant Gambian women: effects on breast-milk calcium concentrations and infant birth weight, growth, and bone mineral accretion in the first year of life. Am J Clin Nutr 83(3):657–666PubMedCrossRefGoogle Scholar
  62. Jarjou LM, Laskey MA, Sawo Y, Goldberg GR, Cole TJ, Prentice A (2010) Effect of calcium supplementation in pregnancy on maternal bone outcomes in women with a low calcium intake. Am J Clin Nutr 92(2):450–457PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jarjou LM, Sawo Y, Goldberg GR, Laskey MA, Cole TJ, Prentice A (2013) Unexpected long-term effects of calcium supplementation in pregnancy on maternal bone outcomes in women with a low calcium intake: a follow-up study. Am J Clin Nutr 98(3):723–730PubMedPubMedCentralCrossRefGoogle Scholar
  64. Javaid MK, Godfrey KM, Taylor P, Shore SR, Breier B, Arden NK et al (2004) Umbilical venous IGF-1 concentration, neonatal bone mass, and body composition. J Bone Miner Res 19(1):56–63PubMedCrossRefGoogle Scholar
  65. Javaid MK, Godfrey KM, Taylor P, Robinson SM, Crozier SR, Dennison EM et al (2005) Umbilical cord leptin predicts neonatal bone mass. Calcif Tissue Int 76(5):341–347PubMedCrossRefGoogle Scholar
  66. Javaid MK, Lekamwasam S, Clark J, Dennison EM, Syddall HE, Loveridge N et al (2006) Infant growth influences proximal femoral geometry in adulthood. J Bone Miner Res 21(4):508–512PubMedCrossRefGoogle Scholar
  67. Javaid MK, Eriksson JG, Kajantie E, Forsen T, Osmond C, Barker DJ et al (2011) Growth in childhood predicts hip fracture risk in later life. Osteoporos Int 22(1):69–73PubMedCrossRefGoogle Scholar
  68. Jones G, Dwyer T (2000) Birth weight, birth length, and bone density in prepubertal children: evidence for an association that may be mediated by genetic factors. Calcif Tissue Int 67(4):304–308PubMedCrossRefGoogle Scholar
  69. Jones G, Riley M, Dwyer T (1999) Maternal smoking during pregnancy, growth, and bone mass in prepubertal children. J Bone Miner Res 14(1):146–151PubMedCrossRefGoogle Scholar
  70. Kalkwarf HJ, Khoury JC, Lanphear BP (2003) Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr 77(1):257–265PubMedCrossRefPubMedCentralGoogle Scholar
  71. Koo WW, Walters JC, Esterlitz J, Levine RJ, Bush AJ, Sibai B (1999) Maternal calcium supplementation and fetal bone mineralization. Obstet Gynecol 94(4):577–582PubMedPubMedCentralGoogle Scholar
  72. Kuh D, Wills AK, Shah I, Prentice A, Hardy R, Adams JE et al (2014) Growth from birth to adulthood and bone phenotype in early old age: a British birth cohort study. J Bone Miner Res 29(1):123–133PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lanham SA, Roberts C, Cooper C, Oreffo RO (2008a) Intrauterine programming of bone. Part 1: Alteration of the osteogenic environment. Osteoporos Int 19(2):147–156PubMedCrossRefGoogle Scholar
  74. Lanham SA, Roberts C, Perry MJ, Cooper C, Oreffo RO (2008b) Intrauterine programming of bone. Part 2: Alteration of skeletal structure. Osteoporos Int 19(2):157–167PubMedCrossRefGoogle Scholar
  75. Lanham SA, Roberts C, Hollingworth T, Sreekumar R, Elahi MM, Cagampang FR et al (2010) Maternal high-fat diet: effects on offspring bone structure. Osteoporos Int 21(10):1703–1714PubMedCrossRefGoogle Scholar
  76. Lanham SA, Roberts C, Habgood AK, Alexander S, Burne TH, Eyles DW et al (2013) Effect of vitamin D deficiency during pregnancy on offspring bone structure, composition and quality in later life. J Dev Orig Health Dis 4(1):49–55PubMedCrossRefGoogle Scholar
  77. Lee WT, Leung SS, Leung DM, Wang SH, Xu YC, Zeng WP et al (1997) Bone mineral acquisition in low calcium intake children following the withdrawal of calcium supplement. Acta Paediatr 86(6):570–576PubMedCrossRefGoogle Scholar
  78. Li J, Liu X, Zuo B, Zhang L (2016) The role of bone marrow microenvironment in governing the balance between osteoblastogenesis and adipogenesis. Aging Dis 7(4):514–525PubMedCrossRefGoogle Scholar
  79. Liang C, Oest ME, Jones JC, Prater MR (2009) Gestational high saturated fat diet alters C57BL/6 mouse perinatal skeletal formation. Birth Defects Res B Dev Reprod Toxicol 86(5):362–369PubMedCrossRefGoogle Scholar
  80. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135(6):1382–1386PubMedCrossRefPubMedCentralGoogle Scholar
  81. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC (2007) Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 97(6):1064–1073PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC (2008) Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr 100(2):278–282PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40(1):46–62PubMedCrossRefPubMedCentralGoogle Scholar
  84. Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, Arden N et al (2010) Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res 25(1):14–19PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mantovani AM, de Lima MCS, Gobbo LA, Ronque ERV, Romanzini M, Turi-Lynch BC et al (2018) Adults engaged in sports in early life have higher bone mass than their inactive peers. J Phys Act Health. 15(7):516–522PubMedCrossRefPubMedCentralGoogle Scholar
  86. Martin R, Harvey NC, Crozier SR, Poole JR, Javaid MK, Dennison EM et al (2007) Placental calcium transporter (PMCA3) gene expression predicts intrauterine bone mineral accrual. Bone 40(5):1203–1208PubMedCrossRefPubMedCentralGoogle Scholar
  87. Matkovic V, Landoll JD, Badenhop-Stevens NE, Ha EY, Crncevic-Orlic Z, Li B et al (2004) Nutrition influences skeletal development from childhood to adulthood: a study of hip, spine, and forearm in adolescent females. J Nutr 134(3):701s–705sPubMedCrossRefPubMedCentralGoogle Scholar
  88. Mehta G, Roach HI, Langley-Evans S, Taylor P, Reading I, Oreffo RO et al (2002) Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcif Tissue Int 71(6):493–498PubMedCrossRefPubMedCentralGoogle Scholar
  89. Mikkola TM, von Bonsdorff MB, Osmond C, Salonen MK, Kajantie E, Eriksson JG (2017) Association of body size at birth and childhood growth with hip fractures in older age: an exploratory follow-up of the Helsinki Birth Cohort Study. J Bone Miner Res 32(6):1194–1200PubMedPubMedCentralCrossRefGoogle Scholar
  90. Monjardino T, Rodrigues T, Inskip H, Harvey N, Cooper C, Santos AC et al (2017) Weight trajectories from birth and bone mineralization at 7 years of age. J Pediatr 191(117–24):e2Google Scholar
  91. Mortada I, Mortada R (2018) Epigenetic changes in mesenchymal stem cells differentiation. Eur J Med Genet. 61(2):114–118PubMedCrossRefPubMedCentralGoogle Scholar
  92. Namgung R, Tsang RC, Lee C, Han DG, Ho ML, Sierra RI (1998) Low total body bone mineral content and high bone resorption in Korean winter-born versus summer-born newborn infants. J Pediatr 132(3 Pt 1):421–425PubMedCrossRefPubMedCentralGoogle Scholar
  93. Nieves JW, Golden AL, Siris E, Kelsey JL, Lindsay R (1995) Teenage and current calcium intake are related to bone mineral density of the hip and forearm in women aged 30–39 years. Am J Epidemiol 141(4):342–351PubMedCrossRefPubMedCentralGoogle Scholar
  94. Oreffo RO, Lashbrooke B, Roach HI, Clarke NM, Cooper C (2003) Maternal protein deficiency affects mesenchymal stem cell activity in the developing offspring. Bone 33(1):100–107PubMedCrossRefPubMedCentralGoogle Scholar
  95. Pillai SM, Sereda NH, Hoffman ML, Valley EV, Crenshaw TD, Park YK et al (2016) Effects of poor maternal nutrition during gestation on bone development and mesenchymal stem cell activity in offspring. PLoS ONE 11(12):e0168382PubMedPubMedCentralCrossRefGoogle Scholar
  96. Prentice A, Jarjou LM, Goldberg GR, Bennett J, Cole TJ, Schoenmakers I (2009) Maternal plasma 25-hydroxyvitamin D concentration and birthweight, growth and bone mineral accretion of Gambian infants. Acta Paediatr 98(8):1360–1362PubMedPubMedCentralCrossRefGoogle Scholar
  97. Raman L, Rajalakshmi K, Krishnamachari KA, Sastry JG (1978) Effect of calcium supplementation to undernourished mothers during pregnancy on the bone density of the bone density of the neonates. Am J Clin Nutr 31(3):466–469PubMedCrossRefPubMedCentralGoogle Scholar
  98. Romano T, Wark JD, Owens JA, Wlodek ME (2009) Prenatal growth restriction and postnatal growth restriction followed by accelerated growth independently program reduced bone growth and strength. Bone 45(1):132–141PubMedCrossRefPubMedCentralGoogle Scholar
  99. Sahoo SK, Katam KK, Das V, Agarwal A, Bhatia V (2017) Maternal vitamin D supplementation in pregnancy and offspring outcomes: a double-blind randomized placebo-controlled trial. J Bone Miner Metab 35(4):464–471PubMedCrossRefPubMedCentralGoogle Scholar
  100. Steer CD, Tobias JH (2011) Insights into the programming of bone development from the Avon Longitudinal Study of Parents and Children (ALSPAC). Am J Clin Nutr 94(6 Suppl):1861s–1864sPubMedCrossRefPubMedCentralGoogle Scholar
  101. Tobias JH, Steer CD, Emmett PM, Tonkin RJ, Cooper C, Ness AR (2005) Bone mass in childhood is related to maternal diet in pregnancy. Osteoporos Int 16(12):1731–1741PubMedCrossRefPubMedCentralGoogle Scholar
  102. Vaziri F, Dabbaghmanesh MH, Samsami A, Nasiri S, Shirazi PT (2016) Vitamin D supplementation during pregnancy on infant anthropometric measurements and bone mass of mother-infant pairs: a randomized placebo clinical trial. Early Hum Dev 103:61–68PubMedCrossRefPubMedCentralGoogle Scholar
  103. Viljakainen HT, Saarnio E, Hytinantti T, Miettinen M, Surcel H, Makitie O et al (2010) Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab 95(4):1749–1757PubMedCrossRefPubMedCentralGoogle Scholar
  104. Viljakainen HT, Korhonen T, Hytinantti T, Laitinen EK, Andersson S, Makitie O et al (2011) Maternal vitamin D status affects bone growth in early childhood—a prospective cohort study. Osteoporos Int 22(3):883–891PubMedCrossRefPubMedCentralGoogle Scholar
  105. Villa CR, Chen J, Wen B, Sacco SM, Taibi A, Ward WE et al (2016) Maternal vitamin D beneficially programs metabolic, gut and bone health of mouse male offspring in an obesogenic environment. Int J Obes (Lond). 40(12):1875–1883CrossRefGoogle Scholar
  106. Weiler H, Fitzpatrick-Wong S, Veitch R, Kovacs H, Schellenberg J, McCloy U et al (2005) Vitamin D deficiency and whole-body and femur bone mass relative to weight in healthy newborns. CMAJ 172(6):757–761PubMedPubMedCentralCrossRefGoogle Scholar
  107. Yakar S, Isaksson O (2016) Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: lessons from mouse models. Growth Horm IGF Res 28:26–42PubMedCrossRefPubMedCentralGoogle Scholar
  108. Yarbrough DE, Barrett-Connor E, Morton DJ (2000) Birth weight as a predictor of adult bone mass in postmenopausal women: the Rancho Bernardo Study. Osteoporos Int 11(7):626–630PubMedCrossRefPubMedCentralGoogle Scholar
  109. Yin J, Dwyer T, Riley M, Cochrane J, Jones G (2010) The association between maternal diet during pregnancy and bone mass of the children at age 16. Eur J Clin Nutr 64(2):131–137PubMedCrossRefPubMedCentralGoogle Scholar
  110. Young BE, McNanley TJ, Cooper EM, McIntyre AW, Witter F, Harris ZL et al (2012) Maternal vitamin D status and calcium intake interact to affect fetal skeletal growth in utero in pregnant adolescents. Am J Clin Nutr 95(5):1103–1112PubMedPubMedCentralCrossRefGoogle Scholar
  111. Young BE, Cooper EM, McIntyre AW, Kent T, Witter F, Harris ZL et al (2014) Placental vitamin D receptor (VDR) expression is related to neonatal vitamin D status, placental calcium transfer, and fetal bone length in pregnant adolescents. Faseb J 28(5):2029–2037PubMedCrossRefPubMedCentralGoogle Scholar
  112. Zhu K, Whitehouse AJ, Hart PH, Kusel M, Mountain J, Lye S et al (2014) Maternal vitamin D status during pregnancy and bone mass in offspring at 20 years of age: a prospective cohort study. J Bone Miner Res 29(5):1088–1095PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Clare Shere
    • 1
  • Cyrus Cooper
    • 1
  • Elaine M. Dennison
    • 1
    Email author
  1. 1.MRC Epidemiology Lifecourse Epidemiology Unit, Southampton General HospitalUniversity of SouthamptonSouthamptonUK

Personalised recommendations