Advertisement

The Interplay Between Dopamine and Environment as the Biological Basis for the Early Origins of Mental Health

  • Barbara Barth
  • André K. Portella
  • Laurette Dubé
  • Michael J. Meaney
  • Patricia Pelufo SilveiraEmail author
Chapter
Part of the Healthy Ageing and Longevity book series (HAL, volume 9)

Abstract

A vast amount of evidence has shown that exposure to prenatal or early postnatal stress can impact the developing individual, increasing the susceptibility to several unfavorable outcomes later in life. It seems that these adversities induce adaptations, altering the metabolism to favor survival at critical periods, but at the expense of the individual’s health as a trade-off. These exposures increase the risk for non-transmittable diseases like type II diabetes, but also psychiatric conditions like ADHD or depression, and these common developmental risk factors suggest overlapping underlying mechanisms. In this chapter, we will explore the idea that the co-morbidity between conditions such as ADHD and metabolic dysregulation occurs, in part at least, because of the influence of metabolic neuroendocrine signals on mescorticolimbic dopamine neurons, especially in individuals exposed to early life adversity. These neurons regulate cognitive-emotional states, notably impulsivity, and reward-based decision-making, thus defining psychiatric phenotypes and contributing to intensify behaviors that in turn promote metabolic disturbances. We will also apply the concept of differential susceptibility, an evolution-informed theoretical framework, to the understanding of the role of dopaminergic pathways on the interplay between environmental adversity, altered metabolism and risk for disease across the life span.

Keywords

Perinatal stress Dopamine neurons Mental health Attention deficit hyperactivity disorder Depression Metabolic dysregulation 

References

  1. Abel KM et al (2010) Birth weight, schizophrenia, and adult mental disorder: is risk confined to the smallest babies? Arch Gen Psychiatry 67(9):923–930PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abeliovich A, Hammond R (2007) Midbrain dopamine neuron differentiation: factors and fates. Develop Biol 304(2):447–454PubMedCrossRefPubMedCentralGoogle Scholar
  3. Abstracts of the 4th World Congress on Developmental Origins of Health and Disease (DOHaD), 13–16 September 2006, Educatorium, University of Utrecht, The Netherlands. Early Human Development, vol 82, no. 8, pp 493–565Google Scholar
  4. Alves MB et al (2015) Increased palatable food intake and response to food cues in intrauterine growth-restricted rats are related to tyrosine hydroxylase content in the orbitofrontal cortex and nucleus accumbens. Behav Brain Res 287:73–81PubMedCrossRefPubMedCentralGoogle Scholar
  5. Auer PL, Stitziel NO (2017) Genetic association studies in cardiovascular diseases: do we have enough power? Trends Cardiovasc Med 27(6):397–404PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ayres C et al (2012) Intrauterine growth restriction and the fetal programming of the hedonic response to sweet taste in newborn infants. Int J Pediatr 2012:657379PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bakermans-Kranenburg MJ, Van Ijzendoorn MH (2011) Differential susceptibility to rearing environment depending on dopamine-related genes: new evidence and a meta-analysis. Developm Psychopathol 23(1):39–52CrossRefGoogle Scholar
  8. Barbieri MA et al (2009) Severe intrauterine growth restriction is associated with higher spontaneous carbohydrate intake in young women. Pediatr Res 65(2):215–220PubMedCrossRefPubMedCentralGoogle Scholar
  9. Barker DJ (2004) The developmental origins of well-being. Philos Trans R Soc Lond B Biol Sci 359(1449):1359–1366PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barker DJP et al (1989) Weight in infancy and death from ischemic heart-disease. Lancet 2(8663):577–580CrossRefGoogle Scholar
  11. Barker DJ et al (1993) Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36(1):62–67CrossRefGoogle Scholar
  12. Barth B et al (in Prep) Differential Susceptibility to positive environments influences childhood emotional eating according to genetically predicted gene expression of prefrontal DRD4 geneGoogle Scholar
  13. Bear MF, Connors BW, Paradiso BW (2016) Neuroscience exploring the brain. 4th edn. Wolters KluwerGoogle Scholar
  14. Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 70(4): 110.002642Google Scholar
  15. Belsky J (1997) Variation in susceptibility to environmental influence: an evolutionary argument. Psychol Inq 8(3):182–186CrossRefGoogle Scholar
  16. Belsky J, Pluess M (2013) Genetic moderation of early child-care effects on social functioning across childhood: a developmental analysis. Child Dev 84(4):1209–1225PubMedPubMedCentralCrossRefGoogle Scholar
  17. Belsky J et al (2009) Vulnerability genes or plasticity genes? Mol Psychiatry 14(8):746–754PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bergvall N et al (2006) Birth characteristics and risk of low intellectual performance in early adulthood: are the associations confounded by socioeconomic factors in adolescence or familial effects? Pediatrics 117(3):714–721PubMedCrossRefPubMedCentralGoogle Scholar
  19. Blair C (2002) Early intervention for low birth weight, preterm infants: the role of negative emotionality in the specification of effects. Develop Psychopathol 14(02)PubMedCrossRefPubMedCentralGoogle Scholar
  20. Boyce WT, Ellis BJ (2005) Biological sensitivity to context: I. an evolutionary-developmental theory of the origins and functions of stress reactivity. Dev Psychopathol 17(2):271–301Google Scholar
  21. Brady S et al (2011) Basic neurochemistry: principles of molecular, cellular, and medical neurobiology. Academic PressGoogle Scholar
  22. Cai Z et al (2015) Role of insulin resistance in Alzheimer’s disease. Metab Brain Dis 30(4):839–851PubMedCrossRefPubMedCentralGoogle Scholar
  23. Caspi A et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–854PubMedCrossRefPubMedCentralGoogle Scholar
  24. Caspi A et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cheng A et al (2010) Monoamine oxidases regulate telencephalic neural progenitors in late embryonic and early postnatal development. J Neurosci 30(32):10752–10762PubMedPubMedCentralCrossRefGoogle Scholar
  26. Consortium CAD et al (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 45(1):25–33Google Scholar
  27. Crume TL et al (2014) The long-term impact of intrauterine growth restriction in a diverse U.S. cohort of children: the EPOCH study. Obesity 22(2):608–615PubMedCrossRefPubMedCentralGoogle Scholar
  28. Cunha Fda S et al (2015) Both food restriction and high-fat diet during gestation induce low birth weight and altered physical activity in adult rat offspring: the “similarities in the inequalities” model. PLoS ONE 10(3):e0118586PubMedCrossRefPubMedCentralGoogle Scholar
  29. Currie J (2005) Health disparities and gaps in school readiness. Future Child 15(1):117–138PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dalle Molle R, Silveira PP (2015) Small for gestational age children have specific food preferences. J Pediatr 166(6):1547PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dalle Molle R et al (2015) Intrauterine growth restriction increases the preference for palatable foods and affects sensitivity to food rewards in male and female adult rats. Brain Res 1618:41–49PubMedCrossRefPubMedCentralGoogle Scholar
  32. David RJ, Siegel E (1983) Decline in neonatal mortality, 1968 to 1977: better babies or better care? Pediatrics 71(4):531–540PubMedPubMedCentralGoogle Scholar
  33. Davis GK et al (2017) Effects of intrauterine growth restriction and female sex on future blood pressure and cardiovascular disease. Curr Hypertens Rep 19(2):13PubMedPubMedCentralCrossRefGoogle Scholar
  34. Desai M et al (2005) Programmed obesity in intrauterine growth-restricted newborns: modulation by. Am J Physiol Regul Integr Comp Physiol 288(1):R91–R96PubMedCrossRefPubMedCentralGoogle Scholar
  35. Disease, A.o.t.t.W.C.o.D.O.o.H.a., Abstracts of the 4th World Congress on Developmental Origins of Health and Disease (DOHaD), 13–16 (September 2006) Educatorium, University of Utrecht, The Netherlands. Early Human Dev 2006(82):493–565Google Scholar
  36. Dudbridge F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genet 9(3):e1003348PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64(3):327–337PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ester WA, Jansen PW, Hoek HW, Verhulst FC, Jaddoe VW, Marques AH, Tiemeier H, Susser ES, Roza SJ (2019) Fetal size and eating behaviour in childhood: a prospective cohort study. Int J Epidemiol 48(1):124–133CrossRefGoogle Scholar
  39. Ford C (2014) The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 282:13–22PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gaiteri C et al (2014) Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain Behav 13(1):13–24PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gamazon ER et al (2015) A gene-based association method for mapping traits using reference transcriptome data. Nat Genet 47(9):1091PubMedPubMedCentralCrossRefGoogle Scholar
  42. Giussani M et al (2013) Cardiovascular risk assessment in children: role of physical activity, family history and parental smoking on BMI and blood pressure. J Hypertens 31(5):983–992PubMedCrossRefGoogle Scholar
  43. Hachiya T et al (2017) Genetic predisposition to ischemic stroke: a polygenic risk score. Stroke 48(2):253–258PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hajnal A, Norgren R (2001) Accumbens dopamine mechanisms in sucrose intake. Brain Res 904(1):76–84PubMedCrossRefGoogle Scholar
  45. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35(7):595–601CrossRefGoogle Scholar
  46. Hari Dass SA, McCracken K, Pokhvisneva I, Chen LM, Garg E, Nguyen TTT, Wang Z, Barth B, Yaqubi M, McEwen LM, MacIsaac JL, Diorio J, Kobor MS, O’Donnell KJ, Meaney MJ, Silveira PP (2019) A biologically-informed polygenic score identifies endophenotypes and clinical conditions associated with the insulin receptor function on specific brain regions. EBioMedicine 42:188–202PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hoops D, Flores C (2017) Making dopamine connections in adolescence. Trends Neurosci 40(12):709–719PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hopes L et al (2016) Magnetic resonance imaging features of the nigrostriatal system: biomarkers of Parkinson’s disease stages? PLoS ONE 11(4)PubMedPubMedCentralCrossRefGoogle Scholar
  49. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35(3):549–562PubMedPubMedCentralCrossRefGoogle Scholar
  50. Huckins LM et al (2017) Gene expression imputation across multiple brain regions reveals schizophrenia risk throughout development, pp 222–596Google Scholar
  51. International Schizophrenia, C et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752Google Scholar
  52. Kampmann FB, Grunnet LG, Halldorsson TI, Bjerregaard AA, Granstrøm C, Pires SM, Strøm M, Vaag AA, Tetens I (2018) Olsen SF. Being born small-for-gestational-age is associated with an unfavourable dietary intake in Danish adolescent girls: findings from the Danish National Birth Cohort. J Dev Orig Health Dis 13(Nov):1–9Google Scholar
  53. Kang R et al (2011) The Beclin 1 network regulates autophagy and apoptosis 18(4):571Google Scholar
  54. Kaseva N et al (2013) Diet and nutrient intake in young adults born preterm at very low birth weight. J Pediatr 163(1):43–48PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kessel SS et al (1984) The changing pattern of low birth weight in the United States 1970 to 1980. JAMA 251(15):1978–1982PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lahti M et al (2014) Late preterm birth, post-term birth, and abnormal fetal growth as risk factors for severe mental disorders from early to late adulthood. Psychol Med 1–15Google Scholar
  57. Laureano DP et al (2015) Facial expressions in small for gestational age newborns. J Child Neurol 31:398PubMedCrossRefPubMedCentralGoogle Scholar
  58. Laureano DP et al (2016) Intrauterine growth restriction modifies the hedonic response to sweet taste in newborn pups—role of the accumbal mu-opioid receptors. Neuroscience 322:500–508PubMedCrossRefGoogle Scholar
  59. Laursen TM et al (2007) A comparison of selected risk factors for unipolar depressive disorder, bipolar affective disorder, schizoaffective disorder, and schizophrenia from a danish population-based cohort. J Clin Psychiatr 68(11):1673–1681CrossRefGoogle Scholar
  60. Lee SH et al (2011) Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet 88(3):294–305PubMedPubMedCentralCrossRefGoogle Scholar
  61. Leonard H et al (2007) Relation between intrauterine growth and subsequent intellectual disability in a ten-year population cohort of children in Western Australia. Am J Epidemiol 167(1):103–111PubMedCrossRefGoogle Scholar
  62. Levitan RD et al (2004) The dopamine-4 receptor gene associated with binge eating and weight gain in women with seasonal affective disorder: an evolutionary perspective. Biol Psychiatry 56(9):665–669PubMedCrossRefGoogle Scholar
  63. Levitan RD et al (2006) A birth-season/DRD4 gene interaction predicts weight gain and obesity in women with seasonal affective disorder: a seasonal thrifty phenotype hypothesis. Neuropsychopharmacology 31(11):2498PubMedCrossRefPubMedCentralGoogle Scholar
  64. Levitan RD et al (2017) A DRD 4 gene by maternal sensitivity interaction predicts risk for overweight or obesity in two independent cohorts of preschool children. J Child Psychol Psychiatry 58(2):180–188PubMedCrossRefPubMedCentralGoogle Scholar
  65. Li D et al (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15(14):2276–2284PubMedCrossRefPubMedCentralGoogle Scholar
  66. Lonsdale J et al (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45:580CrossRefGoogle Scholar
  67. Loxton NJ, Tipman RJ (2017) Reward sensitivity and food addiction in women. Appetite 115:28–35PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lundgren M et al (2004) Intellectual performance in young adult males born small for gestational age. Growth Hormon IGF Res 14:7–8CrossRefGoogle Scholar
  69. Lussana F et al (2008) Prenatal exposure to the Dutch famine is associated with a preference for fatty foods and a more atherogenic lipid profile. Am J Clin Nutr 88(6):1648–1652PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mareckova K et al (2018) Prenatal stress, mood, and gray matter volume in young adulthood. Cereb CortexGoogle Scholar
  71. Martin H et al (2000) Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight. Circulation 102(22):2739–2744PubMedCrossRefPubMedCentralGoogle Scholar
  72. Migraine A et al (2013) Effect of preterm birth and birth weight on eating behavior at 2 y of age. Am J Clin Nutr 97(6):1270–1277PubMedCrossRefPubMedCentralGoogle Scholar
  73. Miguel PM, Pereira LO, Barth B, de Mendonça Filho EJ, Pokhvisneva I, Nguyen TT, ... Sassi RB (2019) Prefrontal cortex dopamine transporter gene network moderates the effect of perinatal hypoxic-ischemic conditions on cognitive flexibility and brain gray matter density in children. Biol PsychiatryGoogle Scholar
  74. Miller JA et al (2014) Transcriptional landscape of the prenatal human brain. Nature 508(7495):199PubMedPubMedCentralCrossRefGoogle Scholar
  75. Monfils Gustafsson W et al (2009) Preterm birth or foetal growth impairment and psychiatric hospitalization in adolescence and early adulthood in a Swedish population-based birth cohort. Acta Psychiatr Scand 119(1):54–61PubMedCrossRefPubMedCentralGoogle Scholar
  76. Moore SR, Depue RA (2016) Neurobehavioral foundation of environmental reactivity. Psychol Bull 142(2):107PubMedCrossRefPubMedCentralGoogle Scholar
  77. Murphy SK et al (2017) Maternal infection and stress during pregnancy and depressive symptoms in adolescent offspring. Psychiatr Res 257:102–110CrossRefGoogle Scholar
  78. Natarajan P et al (2017) Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 135(22):2091–2101PubMedPubMedCentralCrossRefGoogle Scholar
  79. Neuman RJ et al (2007) Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biol Psychiat 61(12):1320–1328PubMedCrossRefPubMedCentralGoogle Scholar
  80. Niederkrotenthaler T, Rasmussen F, Mittendorfer-Rutz E (2012) Perinatal conditions and parental age at birth as risk markers for subsequent suicide attempt and suicide: a population based case-control study. Eur J Epidemiol 27(9):729–738PubMedCrossRefPubMedCentralGoogle Scholar
  81. Nikolova YS et al (2011) Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology 36(9):1940PubMedPubMedCentralCrossRefGoogle Scholar
  82. O’Donnell KJ, Meaney MJ (2017) Fetal origins of mental health: the developmental origins of health and disease hypothesis. Am J Psychiatry 174(4):319–328PubMedCrossRefPubMedCentralGoogle Scholar
  83. O’Donnell KJ et al (2014) The persisting effect of maternal mood in pregnancy on childhood psychopathology. Dev Psychopathol 26(2):393–403PubMedCrossRefPubMedCentralGoogle Scholar
  84. Pearson RM et al (2013) Maternal depression during pregnancy and the postnatal period: risks and possible mechanisms for offspring depression at age 18 years. JAMA Psychiatry 70(12):1312–1319PubMedPubMedCentralCrossRefGoogle Scholar
  85. Perälä MM et al (2012) Body size at birth is associated with food and nutrient intake in adulthood. PLoS ONE 7(9):e46139PubMedPubMedCentralCrossRefGoogle Scholar
  86. Phipps K et al (1993) Fetal growth and impaired glucose tolerance in men and women. Diabetologia 36(3):225–228CrossRefGoogle Scholar
  87. Plant DT et al (2016) Prenatal maternal depression is associated with offspring inflammation at 25 years: a prospective longitudinal cohort study. Transl Psychiatr 6(11):e936CrossRefGoogle Scholar
  88. Portella AK, Silveira PP (2014) Neurobehavioral determinants of nutritional security in fetal growth-restricted individuals. Ann NY Acad SciGoogle Scholar
  89. Portella AK et al (2012) Effects of in utero conditions on adult feeding preferences. J Developm Origins Health Disease 3(3):140–152CrossRefGoogle Scholar
  90. Raikkonen K et al (2008) Depression in young adults with very low birth weight. Arch Gen Psychiatr 65(3):290–296PubMedCrossRefPubMedCentralGoogle Scholar
  91. Ramanan VK et al (2012) Genome-wide pathway analysis of memory impairment in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks. Brain Imag Behav 6(4):634–648CrossRefGoogle Scholar
  92. Rani V et al (2016) Alzheimer’s disease: is this a brain specific diabetic condition? Physiol Behav 164:259–267PubMedCrossRefPubMedCentralGoogle Scholar
  93. Rantakallio P, von Wendt L (1985) Prognosis for low-birthweight infants up to the age of 14: a population study. Dev Med Child Neurol 27(5):655–663PubMedCrossRefPubMedCentralGoogle Scholar
  94. Ravelli AC et al (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351(9097):173–177CrossRefGoogle Scholar
  95. Reichman NE (2005) Low birth weight and school readiness. Future Child 15(1):91–116PubMedCrossRefPubMedCentralGoogle Scholar
  96. Reis RS et al (2015) Poor infant inhibitory control predicts food fussiness in childhood–a possible protective role of n-3 PUFAs for vulnerable children. Prostaglandins, Leukotrienes Essential Fatty Acids 97:21–25CrossRefGoogle Scholar
  97. Reis RS, Dalle Molle R, Machado TD, Mucellini AB, Rodrigues DM, Bortoluzzi A, Bigonha SM, Toazza R, Salum GA, Minuzzi L, Buchweitz A (2016) Impulsivity-based thrifty eating phenotype and the protective role of n-3 PUFAs intake in adolescents. Transl PsychiatryGoogle Scholar
  98. Reynolds LM et al (2018) DCC receptors drive prefrontal cortex maturation by determining dopamine axon targeting in adolescence. Biol Psychiat 83(2):181–192PubMedCrossRefPubMedCentralGoogle Scholar
  99. RichEdwards JW et al (1997) Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315(7105):396–400CrossRefGoogle Scholar
  100. Rich-Edwards JW et al (2005) Longitudinal study of birth weight and adult body mass index in predicting risk of coronary heart disease and stroke in women. BMJ 330(7500):1115PubMedPubMedCentralCrossRefGoogle Scholar
  101. Robbins TW, Clark L (2015) Behavioral addictions. Curr Opin Neurobiol 30:66–72PubMedCrossRefPubMedCentralGoogle Scholar
  102. Rotstein M et al (2015) Facial expression in response to smell and taste stimuli in small and appropriate for gestational age newborns. J Child Neurol 30(11):1466–1471PubMedCrossRefPubMedCentralGoogle Scholar
  103. Scott RA et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44(9):991–1005PubMedPubMedCentralCrossRefGoogle Scholar
  104. Silveira PP (2014) Playing with food: the fetal programming of food preferences. Obesity (Silver Spring) 22(5):1210CrossRefGoogle Scholar
  105. Silveira PP, Manfro G (2015) Retrospective studies, in perinatal programming of neurodevelopment. In: Advances in neurobiology, AM (eds), Springer: New York, NYGoogle Scholar
  106. Silveira PP et al (2012) Preliminary evidence for an impulsivity-based thrifty eating phenotype. Pediatr Res 71(3):293–298PubMedCrossRefPubMedCentralGoogle Scholar
  107. Silveira PP et al (2016) Genetic differential susceptibility to socioeconomic status and childhood obesogenic behavior: why targeted prevention may be the best societal investment. JAMA pediatrics 170(4):359–364PubMedCrossRefPubMedCentralGoogle Scholar
  108. Silveira PP et al (2017) Cumulative prenatal exposure to adversity reveals associations with a broad range of neurodevelopmental outcomes that are moderated by a novel, biologically informed polygenetic score based on the serotonin transporter solute carrier family C6, member 4 (SLC6A4) gene expression. Development psychopathology 29(5):1601–1617PubMedCrossRefPubMedCentralGoogle Scholar
  109. Silveira PP et al (2018) Fetal growth interacts with multilocus genetic score reflecting dopamine signaling capacity to predict spontaneous sugar intake in children. Appetite 120:596–601PubMedCrossRefPubMedCentralGoogle Scholar
  110. Slopen N et al (2015) Early origins of inflammation: an examination of prenatal and childhood social adversity in a prospective cohort study. Psychoneuroendocrinology 51:403–413PubMedCrossRefPubMedCentralGoogle Scholar
  111. Smith JW et al (2002) Dopamine D2L receptor knockout mice display deficits in positive and negative reinforcing properties of morphine and in avoidance learning. Neuroscience 113(4):755–765PubMedCrossRefPubMedCentralGoogle Scholar
  112. Sørensen HT et al (1997) Birth weight and cognitive function in young adult life: historical cohort study. BMJ 315(7105):401–403PubMedPubMedCentralCrossRefGoogle Scholar
  113. Stein AD et al (2009) Associations of gestational exposure to famine with energy balance and macronutrient density of the diet at age 58 years differ according to the reference population used. J Nutr 139(8):1555–1561PubMedPubMedCentralCrossRefGoogle Scholar
  114. Stice E et al (2012) Multilocus genetic composite reflecting dopamine signaling capacity predicts reward circuitry responsivity. J Neurosci 32(29):10093–10100PubMedPubMedCentralCrossRefGoogle Scholar
  115. Strauss RS (2000) Adult functional outcome of those born small for gestational age: twenty-six-year follow-up of the 1970 British Birth Cohort. JAMA 283(5):625–632PubMedCrossRefPubMedCentralGoogle Scholar
  116. van Dijk AE et al (2012) The association between prenatal psychosocial stress and blood pressure in the child at age 5–7 years. PLoS ONE 7(8):e43548PubMedPubMedCentralCrossRefGoogle Scholar
  117. Verdile G, Fuller SJ, Martins RN (2015) The role of type 2 diabetes in neurodegeneration. Neurobiol Dis 84:22–38PubMedCrossRefPubMedCentralGoogle Scholar
  118. Visentin S et al (2014) Early origins of adult disease: low birth weight and vascular remodeling. Atherosclerosis 237(2):391–399PubMedCrossRefPubMedCentralGoogle Scholar
  119. Wang KC et al (2017) Akt signaling as a mediator of cardiac adaptation to low birth weight. J Endocrinol 233(2):R81–R94PubMedCrossRefPubMedCentralGoogle Scholar
  120. Willing J et al (2017) Innervation of the medial prefrontal cortex by tyrosine hydroxylase immunoreactive fibers during adolescence in male and female rats. Dev Psychobiol 59(5):583–589PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wilson GT (2010) Eating disorders, obesity and addiction. Eur Eating Disorders Rev 18(5):341–351CrossRefGoogle Scholar
  122. Wray NR et al (2014) Research review: polygenic methods and their application to psychiatric traits. J Child Psychol Psychiatry 55(10):1068–1087PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Barbara Barth
    • 1
    • 2
  • André K. Portella
    • 3
  • Laurette Dubé
    • 3
  • Michael J. Meaney
    • 1
    • 4
    • 5
  • Patricia Pelufo Silveira
    • 1
    • 2
    • 4
    Email author
  1. 1.Integrated Program in NeuroscienceMcGill UniversityMontrealCanada
  2. 2.Department of Psychiatry, Faculty of Medicine and Ludmer Center for Neuroinformatics and Mental HealthMcGill UniversityMontrealCanada
  3. 3.Desautels Faculty of ManagementMcGill Center for the Convergence of Health and Economics, McGill UniversityMontrealCanada
  4. 4.Douglas Hospital Research Centre, 6875 Boulevard LaSalleMontrealCanada
  5. 5.Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore

Personalised recommendations