Advertisement

Early Life Nutritional Programming of Adult Health Status

  • Simon C. Langley-EvansEmail author
  • Beverly Muhlhausler
Chapter
Part of the Healthy Ageing and Longevity book series (HAL, volume 9)

Abstract

There is increasing recognition that the risk of a broad range of non-communicable diseases, including obesity, cardiovascular disease and type 2 diabetes, are related not only to genetic predisposition but also to adaptive changes to environmental exposures during development. This concept, referred to as the Developmental Origins of Health and Disease (DOHaD) hypothesis, means that exposure to a sub-optimal environment during critical periods of development is associated with persistent changes to tissue morphology and function. This impairs the capacity of organ systems to adapt to physiological stressors, including ageing, in postnatal life and ultimately results in poor adult cardiometabolic health. The early DOHaD studies focussed primarily on the impacts of inadequate maternal nutrition and/or low birth weight and established the link between sub-optimal intrauterine growth and risk of poor adult cardiovascular and metabolic health. However, in contemporary Western societies, maternal over-nutrition, overweight and obesity are far more common nutritional issues and this has led to an increased focus of the field on the long-term consequences of exposure to these stimuli in early life. This Chapter will focus on exploring our current understanding of the impact of exposure to maternal overweight, obesity and poor quality Western-style diets on both the mother and her offspring. We will present evidence from both human epidemiological studies and animal models, and out forward practical suggestions for potential strategies to improve outcomes.

Keywords

Maternal obesity Fetal programming Cardiovascular disease Pregnancy Metabolic syndrome 

References

  1. Agopian AJ, Tinker SC, Lupo PJ, Canfield MA, Mitchell LE (2013) Proportion of neural tube defects attributable to known risk factors. Birth Defects Res A Clin Mol Teratol 97:42–46PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akyol A, Langley-Evans SC, McMullen S (2009) Obesity induced by cafeteria feeding and pregnancy outcome in the rat. Br J Nutr 102:1601–1610PubMedCrossRefPubMedCentralGoogle Scholar
  3. Amir LH, Donath S (2007) A systematic review of maternal obesity and breastfeeding intention, initiation and duration. BMC Pregnancy Childbirth 7:9PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anderson JW, Patterson K (2005) Snack foods: comparing nutrition values of excellent choices and “junk foods”. J Am Coll Nutr 24:155–156; discussion 156–157PubMedCrossRefPubMedCentralGoogle Scholar
  5. Andreas NJ, Hyde MJ, Gale C (2014) Effect of maternal body mass index on hormones in breast milk: a systematic review. PLoS ONE 9:e115043PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arenz S, Ruckerl R, Koletzko B, von Kries R (2004) Breast-feeding and childhood obesity–a systematic review. Int J Obes Relat Metab Disord 28:1247–1256PubMedCrossRefPubMedCentralGoogle Scholar
  7. Armitage JA, Taylor PD, Poston L (2005) Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J Physiol 565:3–8PubMedPubMedCentralCrossRefGoogle Scholar
  8. Australian Institute of Health and Welfare (2017) A picture of overweight and obesity in Australia 2017. Cat. no. PHE 216. AIHW, CanberraGoogle Scholar
  9. Ballard O, Morrow AL (2013) Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 60:49–74PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barker DJ (2007) The origins of the developmental origins theory. J Intern Med 261:412–417PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bayol SA, Farrington SJ, Stickland NC (2007) A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. Br J Nutr 98: 843–851Google Scholar
  12. Bayol S, Simbi B, Bertrand J, Stickland N (2008) Offspring from mothers fed a ‘junk food’ diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. J Physiol 586:3219–3230PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bayol SA, Simbi BH, Fowkes RC, Stickland NC (2010) A maternal “junk food” diet in pregnancy and lactation promotes nonalcoholic Fatty liver disease in rat offspring. Endocrinology 151:1451–1461PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bellinger L, Sculley DV, Langley-Evans SC (2006) Exposure to undernutrition in fetal life determines fat distribution, locomotor activity and food intake in ageing rats. Int J Obes (Lond) 30:729–738CrossRefGoogle Scholar
  15. Bennis-Taleb N, Remacle C, Hoet JJ, Reusens B (1999) A low-protein isocaloric diet during gestation affects brain development and alters permanently cerebral cortex blood vessels in rat offspring. J Nutr 129:1613–1619PubMedCrossRefPubMedCentralGoogle Scholar
  16. Black MJ, Siebel AL, Gezmish O, Moritz KM, Wlodek ME (2012) Normal lactational environment restores cardiomyocyte number after uteroplacental insufficiency: implications for the preterm neonate. Am J Physiol Regul Integr Comp Physiol 302:R1101–R1110PubMedPubMedCentralCrossRefGoogle Scholar
  17. Boney CM, Verma A, Tucker R, Vohr BR (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115:e290–e296CrossRefGoogle Scholar
  18. Borghesi Y, Labreuche J, Duhamel A, Pigeyre M, Deruelle P (2017) Risk of cesarean delivery among pregnant women with class III obesity. Int J Gynaecol Obstet 136:168–174PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bouret SG, Simerly RB (2004) Minireview: leptin and development of hypothalamic feeding circuits. Endocrinology 145:2621–2626PubMedCrossRefPubMedCentralGoogle Scholar
  20. Briffa JF, O’Dowd R, Moritz KM et al (2017) Uteroplacental insufficiency reduces rat plasma leptin concentrations and alters placental leptin transporters: ameliorated with enhanced milk intake and nutrition. J Physiol 595:3389–3407PubMedPubMedCentralCrossRefGoogle Scholar
  21. Briley AL, Barr S, Badger S, Bell R, Croker H, Godfrey KM, Holmes B, Kinnunen TI, Nelson SM, Oteng-Ntim E, Patel N, Robson SC, Sandall J, Sanders T, Sattar N, Seed PT, Wardle J, Poston L (2014) A complex intervention to improve pregnancy outcome in obese women; the UPBEAT randomised controlled trial. BMC Pregnancy Childbirth 14:74PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brion MJ, Ness AR, Rogers I et al (2010) Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: exploring parental comparisons and prenatal effects. Am J Clin Nutr 91:748–756PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brunner S, Schmid D, Zang K et al (2015) Breast milk leptin and adiponectin in relation to infant body composition up to 2 years. Pediatr Obes 10:67–73PubMedCrossRefPubMedCentralGoogle Scholar
  24. Burlingame J, Horiuchi B, Ohana P, Onaka A, Sauvage LM (2012) The contribution of heart disease to pregnancy-related mortality according to the pregnancy mortality surveillance system. J Perinatol 32:163–169PubMedCrossRefPubMedCentralGoogle Scholar
  25. Calder PC, Carding SR, Christopher G, Kuh D, Langley-Evans SC, McNulty H (2018) A holistic approach to healthy ageing: how can people live longer, healthier lives? J Hum Nutr DietGoogle Scholar
  26. Cannon AM, Gridneva Z, Hepworth AR et al (2017) The relationship of human milk leptin and macronutrients with gastric emptying in term breast-fed infants. Pediatr Res 82:72–78PubMedCrossRefPubMedCentralGoogle Scholar
  27. Carmichael SL, Blumenfeld YJ, Mayo J, Wei E, Gould JB, Stevenson DK, Shaw GM (2015) Prepregnancy obesity and risks of stillbirth. PLoS ONE 10:e0138549PubMedPubMedCentralCrossRefGoogle Scholar
  28. Castro LC, Avina RL (2002) Maternal obesity and pregnancy outcomes. Curr Opin Obstet Gynecol 14:601–606PubMedCrossRefPubMedCentralGoogle Scholar
  29. Catalano PM (2003) Obesity and pregnancy—the propagation of a viscous cycle? J Clin Endocrinol Metab 88:3505–3506PubMedCrossRefPubMedCentralGoogle Scholar
  30. Catalano PM, Ehrenberg HM (2006) The short and long term implications of maternal obesity on the mother and her offspring. Int J Obstetr Gynaecol 113:1126–1133CrossRefGoogle Scholar
  31. Catalano PM, Presley L, Minium J, Hauguel-de Mouzon S (2009) Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 32:1076–1080PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cavalcante MB, Sarno M, Peixoto AB, Araujo Júnior E, Barini R (2018) Obesity and recurrent miscarriage: a systematic review and meta-analysis. J Obstet Gynaecol ResGoogle Scholar
  33. Centre for Maternal and Child Enquiries (CMACE) (2010) Maternal obesity in the UK: findings from a national project. CMACE, LondonGoogle Scholar
  34. Cerf ME, Louw J (2014) Islet cell response to high fat programming in neonate, weanling and adolescent Wistar rats. JOP 15:228–236PubMedPubMedCentralGoogle Scholar
  35. Connor KL, Vickers MH, Beltrand J, Meaney MJ, Sloboda DM (2012) Nature, nurture or nutrition? Impact of maternal nutrition on maternal care, offspring development and reproductive function. J Physiol 590:2167–2180PubMedPubMedCentralCrossRefGoogle Scholar
  36. Denison FC, Norrie G, Graham B, Lynch J, Harper N, Reynolds RM (2009) Increased maternal BMI is associated with an increased risk of minor complications during pregnancy with consequent cost implications. BJOG 116:1467–1472PubMedCrossRefPubMedCentralGoogle Scholar
  37. Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG (2014) Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol 211:237.e1–237.e13CrossRefGoogle Scholar
  38. Dodd JM, Turnbull D, McPhee AJ, Deussen AR, Grivell RM, Yelland LN, Crowther CA, Wittert G, Owens JA, Robinson JS (2014a) Antenatal lifestyle advice for women who are overweight or obese: LIMIT randomised trial. BMJ 348:g1285PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dodd JM, Cramp C, Sui Z, Yelland LN, Deussen AR, Grivell RM, Moran LJ, Crowther CA, Turnbull D, McPhee AJ, Wittert G, Owens JA, Robinson JS (2014b) The effects of antenatal dietary and lifestyle advice for women who are overweight or obese on maternal diet and physical activity: the LIMIT randomised trial. BMC Med 12:161PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dodd JM, Deussen AR, Mohamad I, Rifas-Shiman SL, Yelland LN, Louise J, McPhee AJ, Grivell RM, Owens JA, Gillman MW, Robinson JS (2016) The effect of antenatal lifestyle advice for women who are overweight or obese on secondary measures of neonatal body composition: the LIMIT randomised trial. BJOG 123:244–253PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dodd JM, McPhee AJ, Deussen AR, Louise J, Yelland LN, Owens JA, Robinson JS (2018) Effects of an antenatal dietary intervention in overweight and obese women on 6 month infant outcomes: follow-up from the LIMIT randomised trial. Int J Obes (Lond) 42:1326–1335CrossRefGoogle Scholar
  42. Donath S, Amir L (2000) Does maternal obesity adversely affect breastfeeding initiation and duration? J Pediatr Child Health 36:482–486CrossRefGoogle Scholar
  43. Erhuma A, Salter AM, Sculley DV, Langley-Evans SC, Bennett AJ (2007) Prenatal exposure to a low-protein diet programs disordered regulation of lipid metabolism in the aging rat. Am J Physiol Endocrinol Metab 292:E1702–E1714PubMedPubMedCentralCrossRefGoogle Scholar
  44. Eriksson JG, Forsén T, Tuomilehto J, Osmond C, Barker DJ (2001) Early growth and coronary heart disease in later life: longitudinal study. BMJ 322:949–953PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fall CH, Stein CE, Kumaran K, Cox V, Osmond C, Barker DJ, Hales CN (1998) Size at birth, maternal weight, and type 2 diabetes in South India. Diabet Med 15:220–227PubMedCrossRefPubMedCentralGoogle Scholar
  46. Faucett AM, Metz TD, DeWitt PE, Gibbs RS (2016) Effect of obesity on neonatal outcomes in pregnancies with preterm premature rupture of membranes. Am J Obstet Gynecol 214:287.e1–287.e5CrossRefGoogle Scholar
  47. Ferezou-Viala J, Roy A-F, Serougne C et al (2007) Long-term consequences of maternal high-fat feeding on hypothalamic leptin sensitivity and diet-induced obesity in the offspring. Am J Physiol Regul Integr Comp Physiol 293:R1056–R1062PubMedCrossRefPubMedCentralGoogle Scholar
  48. Fields DA, George B, Williams M et al (2017) Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatr Obes 12(Suppl 1):78–85PubMedPubMedCentralCrossRefGoogle Scholar
  49. Flenady V, Koopmans L, Middleton P, Frøen JF, Smith GC, Gibbons K, Coory M, Gordon A, Ellwood D, McIntyre HD, Fretts R, Ezzati M (2011) Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. Lancet 377:1331–1340PubMedCrossRefPubMedCentralGoogle Scholar
  50. Forsén T, Eriksson JG, Tuomilehto J, Osmond C, Barker DJ (1999) Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ 319:1403–1407PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gammill HS, Roberts JM (2007) Emerging concepts in preeclampsia investigation. Front Biosci 12:2403–2411PubMedCrossRefPubMedCentralGoogle Scholar
  52. Gillman MW, Rifas-Shiman S, Berkey CS, Field AE, Colditz GA (2003) Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics 111:e221–e226PubMedCrossRefPubMedCentralGoogle Scholar
  53. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gourmerou AG, Matalliotakis IM, Koumantakis GE, Panidis DK (2003) The role of leptin in fertility. J Obs Gynae Reprod Biol 106:118–124CrossRefGoogle Scholar
  55. Grivell RM, Yelland LN, Deussen A, Crowther CA, Dodd JM (2016) Antenatal dietary and lifestyle advice for women who are overweight or obese and the effect on fetal growth and adiposity: the LIMIT randomised trial. BJOG 123:233–243PubMedPubMedCentralCrossRefGoogle Scholar
  56. Grunewald M, Hellmuth C, Demmelmair H, Koletzko B (2014) Excessive weight gain during full breast-feeding. Ann Nutr Metab 64:271–275PubMedCrossRefPubMedCentralGoogle Scholar
  57. Gugusheff JR, Ong ZY, Muhlhausler BS (2013a) A maternal “junk-food” diet reduces sensitivity to the opioid antagonist naloxone in offspring postweaning. FASEB J 27:1275–1284PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gugusheff JR, Vithayathil M, Ong ZY, Muhlhausler BS (2013b) The effects of prenatal exposure to a ‘junk food’ diet on offspring food preferences and fat deposition can be mitigated by improved nutrition during lactation. J Dev Orig Health Dis 4:348–357PubMedCrossRefPubMedCentralGoogle Scholar
  59. Gugusheff JR, Bae SE, Rao A et al (2016) Sex and age-dependent effects of a maternal junk food diet on the mu-opioid receptor in rat offspring. Behav Brain Res 301:124–131PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hales CM, Carroll MD, Fryar CD, Ogden CL (2018) Prevalence of obesity among adults and youth: United States, 2015–2016. In: NCHS data brief, vol 288. https://www.cdc.gov/nchs/data/databriefs/db288.pdf. Accessed Sept 2018
  61. Hassiotou F, Geddes DT (2014) Programming of appetite control during breastfeeding as a preventative strategy against the obesity epidemic. J Hum Lact 30:136–142PubMedCrossRefPubMedCentralGoogle Scholar
  62. Horta BL, Loret de Mola C, Victora CG (2015) Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta Paediatr 104:30–37PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hue-Beauvais C, Miranda G, Aujean E et al (2017) Diet-induced modifications to milk composition have long-term effects on offspring growth in rabbits. J Anim Sci 95:761–770PubMedPubMedCentralGoogle Scholar
  64. Hussain A, Claussen B, Ramachandran A, Williams R (2007) Prevention of type 2 diabetes: a review. Diabetes Res Clin Pract 76:317–326PubMedCrossRefPubMedCentralGoogle Scholar
  65. Institute of Medicine (2009) Weight gain during pregnancy: reexamining the guidelines. National Academies Press, Washington DCGoogle Scholar
  66. Isganaitis E, Woo M, Ma H, Chen M, Kong W, Lytras A, Sales V, Decoste-Lopez J, Lee KJ, Leatherwood C, Lee D, Fitzpatrick C, Gall W, Watkins S, Patti ME (2014) Developmental programming by maternal insulin resistance: hyperinsulinemia, glucose intolerance, and dysregulated lipid metabolism in male offspring of insulin-resistant mice. Diabetes 63:688–700PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jensen CL (2006) Effects of n-3 fatty acids during pregnancy and lactation. Am J Clin Nutr 83(6 Suppl):1452S–1457SPubMedCrossRefPubMedCentralGoogle Scholar
  68. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13:635–641PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kaunonen M, Hannula L, Tarkka MT (2012) A systematic review of peer support interventions for breastfeeding. J Clin Nurs 21:1943–1954PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kirk SL, Samuelsson AM, Argenton M, Dhonye H, Kalamatianos T, Poston L, Taylor PD, Coen CW (2009) Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS ONE 4:e5870PubMedPubMedCentralCrossRefGoogle Scholar
  71. Koletzko B, von Kries R, Closa R et al (2009) Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr 89:1836–1845PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kon IY, Shilina NM, Gmoshinskaya MV, Ivanushkina TA (2014) The study of breast milk IGF-1, leptin, ghrelin and adiponectin levels as possible reasons of high weight gain in breast-fed infants. Ann Nutr Metab 65:317–323PubMedCrossRefPubMedCentralGoogle Scholar
  73. Krasnow SM, Nguyen ML, Marks DL (2011) Increased maternal fat consumption during pregnancy alters body composition in neonatal mice. Am J Physiol Endocrinol Metab 301:E1243–E1253PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kugananthan S, Gridneva Z, Lai CT, Hepworth AR, Mark PJ, Kakulas F, Geddes DT (2017) Associations between maternal body composition and appetite hormones and macronutrients in human milk. Nutrients 9(3). pii:E252PubMedCentralCrossRefGoogle Scholar
  75. Laitinen J, Pietilainen K, Wadsworth M, Sovio U, Jarvelin MR (2004) Predictors of abdominal obesity among 31-y-old men and women born in Northern Finland in 1966. Eur J Clin Nutr 58:180–190PubMedCrossRefPubMedCentralGoogle Scholar
  76. Langley-Evans SC (2015) Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 28(Suppl 1):1–14PubMedCrossRefPubMedCentralGoogle Scholar
  77. Langley-Evans SC, Gardner DS, Jackson AA (1996) Association of disproportionate growth of fetal rats in late gestation with raised systolic blood pressure in later life. J Reprod Fertil 106:307–312PubMedCrossRefPubMedCentralGoogle Scholar
  78. Langley-Evans SC, Welham SJ, Jackson AA (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64:965–974CrossRefGoogle Scholar
  79. Lillycrop KA, Burdge GC (2015) Maternal diet as a modifier of offspring epigenetics. J Dev Orig Health Dis 6:88–95PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lloyd LJ, Langley-Evans SC, McMullen S (2010) Childhood obesity and adult cardiovascular disease risk: a systematic review. Int J Obes (Lond) 34:18–28CrossRefGoogle Scholar
  81. Lloyd LJ, Langley-Evans SC, McMullen S (2012) Childhood obesity and risk of the adult metabolic syndrome: a systematic review. Int J Obes (Lond) 36:1–11CrossRefGoogle Scholar
  82. Maconochie N, Doyle P, Prior S, Simmons R (2007) Risk factors for first trimester miscarriage–results from a UK-population-based case-control study. BJOG 114:170–186PubMedCrossRefPubMedCentralGoogle Scholar
  83. Makarova EN, Chepeleva EV, Panchenko PE, Bazhan NM (2013) Influence of abnormally high leptin levels during pregnancy on metabolic phenotypes in progeny mice. Am J Physiol Regul Integr Comp Physiol 305:R1268–R1280PubMedCrossRefPubMedCentralGoogle Scholar
  84. Martire SI, Holmes N, Westbrook RF, Morris MJ (2013) Altered feeding patterns in rats exposed to a palatable cafeteria diet: increased snacking and its implications for development of obesity. PLoS ONE 8:e60407PubMedPubMedCentralCrossRefGoogle Scholar
  85. May L, Suminski R, Berry A, Linklater E, Jahnke S (2014) Diet and pregnancy: health-care providers and patient behaviors. J Perinat Educ 23:50–56PubMedPubMedCentralCrossRefGoogle Scholar
  86. McAndrew F, Thompson J, Fellows L, Large A, Speed M, Renfrew MJ (2010) Infant feeding survey 2010. Health and Social Care Information Centre, Leeds, UK. http://doc.ukdataservice.ac.uk/doc/7281/mrdoc/pdf/7281_ifs-uk-2010_report.pdf. Accessed Sept 2018
  87. McGiveron A, Foster S, Pearce J, Taylor MA, McMullen S, Langley-Evans SC (2015) Limiting antenatal weight gain improves maternal health outcomes in severely obese pregnant women: findings of a pragmatic evaluation of a midwife-led intervention. J Hum Nutr Diet 28(Suppl 1):29–37PubMedCrossRefPubMedCentralGoogle Scholar
  88. McMullen S, Mostyn A (2009) Animal models for the study of the developmental origins of health and disease. Proc Nutr Soc 68:306–320PubMedCrossRefPubMedCentralGoogle Scholar
  89. McMullen S, Swali A (2013) Common phenotypes and the developmental origins of disease. Curr Opin Clin Nutr Metab Care 16:398–404PubMedCrossRefPubMedCentralGoogle Scholar
  90. McMullen S, Langley-Evans SC, Gambling L, Lang C, Swali A, McArdle HJ (2012) A common cause for a common phenotype: the gatekeeper hypothesis in fetal programming. Med Hypotheses 78:88–94PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mingrone G, Manco M, Mora ME et al (2008) Influence of maternal obesity on insulin sensitivity and secretion in offspring. Diabetes Care 31:1872–1876PubMedPubMedCentralCrossRefGoogle Scholar
  92. Moran LJ, Ko H, Misso M (2012) Dietary composition in the treatment of polycystic ovary syndrome: a systematic review to inform evidence-based guidelines. J Acad Nutr Diet 113:520–545CrossRefGoogle Scholar
  93. Muir R, Liu G, Khan R, Shmygol A, Quenby S, Gibson RA, Muhlhausler B, Elmes M (2018) Maternal obesity-induced decreases in plasma, hepatic and uterine polyunsaturated fatty acids during labour is reversed through improved nutrition at conception. Sci Rep 8:3389PubMedPubMedCentralCrossRefGoogle Scholar
  94. National Institute for Healthcare and Clinical Excellence (2018) Weight management before and during pregnancy. Public health guideline PH27. https://www.nice.org.uk/guidance/ph27/chapter/1-Recommendations#recommendation-1-preparing-for-pregnancy-women-with-a-bmi-of-30-or-more. Accessed Sept 2018
  95. National Statistics Office (2018) Statistics on obesity, physical activity and diet, England. https://www.gov.uk/government/statistics/statistics-on-obesity-physical-activity-and-diet-england-2018. Accessed Sept 2018
  96. Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449PubMedCrossRefPubMedCentralGoogle Scholar
  97. Nivoit P, Morens C, Van Assche F, Jansen E, Poston L, Remacle C, Reusens B (2009) Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 52:1133–1142PubMedCrossRefPubMedCentralGoogle Scholar
  98. Nohr EA, Bech BH, Vaeth M, Rasmussen KM, Henriksen TB, Olsen J (2007) Obesity, gestational weight gain and preterm birth: a study within the Danish National Birth Cohort. Paediatr Perinat Epidemiol 21:5–14PubMedCrossRefPubMedCentralGoogle Scholar
  99. O’Dowd R, Wlodek ME, Nicholas KR (2008) Uteroplacental insufficiency alters the mammary gland response to lactogenic hormones in vitro. Reprod Fertil Dev 20:460–465PubMedCrossRefPubMedCentralGoogle Scholar
  100. Ong ZY, Muhlhausler BS (2011) Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J 25:2167–2179PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ong ZY, Muhlhausler BS (2014) Consuming a low-fat diet from weaning to adulthood reverses the programming of food preferences in male, but not female, offspring of ‘junk food’-fed rat dams. Acta Physiol 210:127–141CrossRefGoogle Scholar
  102. Ordovas JM (2006) Nutrigenetics, plasma lipids, and cardiovascular risk. J Am Diet Assoc 106:1074–1081PubMedCrossRefPubMedCentralGoogle Scholar
  103. Organisation for Economic Co-operation and Development. Obesity update 2017. www.oecd.org/health/obesity-update.htm. Accessed Sept 2018
  104. Ozanne SE, Hales CN (2004) Lifespan: catch-up growth and obesity in male mice. Nature 427:411–412CrossRefGoogle Scholar
  105. Parsons TJ, Power C, Manor O (2001) Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal study. Brit Med J 323:1331–1335PubMedCrossRefPubMedCentralGoogle Scholar
  106. Perrella SL, Geddes DT (2016) A case report of a breast-fed infant’s excessive weight gains over 14 months. J Hum Lact 32:364–368PubMedCrossRefPubMedCentralGoogle Scholar
  107. Plagemann A, Harder T, Franke K, Kohlhoff R (2002) Long-term impact of neonatal breast-feeding on body weight and glucose tolerance in children of diabetic mothers. Diabetes Care 25:16–22PubMedCrossRefPubMedCentralGoogle Scholar
  108. Poston L, Bell R, Croker H, Flynn AC, Godfrey KM, Goff L, Hayes L, Khazaezadeh N, Nelson SM, Oteng-Ntim E, Pasupathy D, Patel N, Robson SC, Sandall J, Sanders TA, Sattar N, Seed PT, Wardle J, Whitworth MK, Briley AL (2015) Effect of a behavioural intervention in obese pregnant women (the UPBEAT study): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol 3:767–777PubMedCrossRefPubMedCentralGoogle Scholar
  109. Prentice P, Ong KK, Schoemaker MH et al (2016) Breast milk nutrient content and infancy growth. Acta Paediatr 105:641–647PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rasmussen KM, Kjolhede CL (2004) Prepregnant overweight and obesity diminish the prolactin response to suckling in the first week postpartum. Pediatrics 113:e465–e471PubMedCrossRefPubMedCentralGoogle Scholar
  111. Ravelli AC, van der Meulen JH, Osmond C, Barker DJ, Bleker OP (2000) Infant feeding and adult glucose tolerance, lipid profile, blood pressure, and obesity. Arch Dis Child 82:248–252PubMedPubMedCentralCrossRefGoogle Scholar
  112. Reader DM (2007) Medical nutrition therapy and lifestyle interventions. Diabetes Care 30(Suppl 2):S188–S193PubMedCrossRefPubMedCentralGoogle Scholar
  113. Reece EA (2012) Diabetes-induced birth defects: what do we know? What can we do? Curr Diab Rep 12:24–32PubMedCrossRefPubMedCentralGoogle Scholar
  114. Rich-Edwards JW, Colditz GA, Stampfer MJ et al (1999) Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Int Med 130:278–284PubMedCrossRefPubMedCentralGoogle Scholar
  115. Ritchie LD, Whaley SE, Spector P, Gomez J, Crawford PB (2010) Favorable impact of nutrition education on California WIC families. J Nutr Educ Behav 42(3 Suppl):S2–S10PubMedCrossRefPubMedCentralGoogle Scholar
  116. Sampey BP, Vanhoose AM, Winfield HM et al (2011) Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity 19:1109–1117PubMedCrossRefPubMedCentralGoogle Scholar
  117. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH, Piersma AH, Ozanne SE, Twinn DF, Remacle C, Rowlerson A, Poston L, Taylor PD (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51:383–392PubMedCrossRefPubMedCentralGoogle Scholar
  118. Savino F, Liguori SA, Fissore MF, Oggero R (2009) Breast milk hormones and their protective effect on obesity. Int J Pediatr Endocrinol 2009:327505PubMedPubMedCentralCrossRefGoogle Scholar
  119. Segovia SA, Vickers MH, Harrison CJ, Patel R, Gray C, Reynolds CM (2018) Maternal high-fat and high-salt diets have differential programming effects on metabolism in adult male rat offspring. Front Nutr 7(5):1CrossRefGoogle Scholar
  120. Shankar K, Harrell A, Liu X, Gilchrist JM, Ronis MJ, Badger TM (2008) Maternal obesity at conception programs obesity in the offspring. Am J Physiol Regul Integr Comp Physiol 294:R528–R538PubMedCrossRefPubMedCentralGoogle Scholar
  121. Siebel AL, Mibus A, De Blasio MJ et al (2008) Improved lactational nutrition and postnatal growth ameliorates impairment of glucose tolerance by uteroplacental insufficiency in male rat offspring. Endocrinology 149:3067–3076PubMedCrossRefPubMedCentralGoogle Scholar
  122. Snoeck A, Remacle C, Reusens B, Hoet JJ (1990) Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 57:107–118PubMedCrossRefPubMedCentralGoogle Scholar
  123. Stothard KJ, Tennant PW, Bell R, Rankin J (2009) Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 301:636–650PubMedCrossRefPubMedCentralGoogle Scholar
  124. Stuart TJ, O’Neill K, Condon D, Sasson I, Sen P, Xia Y, Simmons RA (2018) Diet-induced obesity alters the maternal metabolome and early placenta transcriptome and decreases placenta vascularity in the mouse. Biol Reprod 98:795–809PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sudfeld CR, Fawzi WW, Lahariya C (2012) Peer support and exclusive breastfeeding duration in low and middle-income countries: a systematic review and meta-analysis. PLoS ONE 7:e45143PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sun B, Purcell RH, Terrillion CE, Yan J, Moran TH, Tamashiro KL (2012) Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes 61:2833–2841PubMedPubMedCentralCrossRefGoogle Scholar
  127. Swali A, McMullen S, Hayes H, Gambling L, McArdle HJ, Langley-Evans SC (2011) Cell cycle regulation and cytoskeletal remodelling are critical processes in the nutritional programming of embryonic development. PLoS ONE 6:e23189PubMedPubMedCentralCrossRefGoogle Scholar
  128. Tang M (2018) Protein intake during the first two years of life and its association with growth and risk of overweight. Int J Environ Res Pub Health 15PubMedCentralCrossRefGoogle Scholar
  129. Tare M, Parkington HC, Bubb KJ, Wlodek ME (2012) Uteroplacental insufficiency and lactational environment separately influence arterial stiffness and vascular function in adult male rats. Hypertension 60:378–386PubMedCrossRefPubMedCentralGoogle Scholar
  130. Teegarden SL, Scotta AN, Bale TL (2009) Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling. Neuroscience 162:924–932PubMedPubMedCentralCrossRefGoogle Scholar
  131. Thangaratinam S, Rogozinska E, Jolly K, Glinkowski S, Roseboom T, Tomlinson JW, Kunz R, Mol BW, Coomarasamy A, Khan KS (2012) Effects of interventions in pregnancy on maternal weight and obstetric outcomes: meta-analysis of randomised evidence. BMJ 344:e2088PubMedPubMedCentralCrossRefGoogle Scholar
  132. Thornton YS, Smarkola C, Kopacz SM, Ishoof SB (2009) Perinatal outcomes in nutritionally monitored obese pregnant women: a randomized clinical trial. J Natl Med Assoc 101:569–577PubMedCrossRefPubMedCentralGoogle Scholar
  133. Vithayathil MA, Gugusheff JR, Ong ZY, Langley-Evans SC, Gibsonm RA, Muhlhausler BS (2018) Exposure to maternal cafeteria diets during the suckling period has greater effects on fat deposition and Sterol Regulatory Element Binding Protein-1c (SREBP-1c) gene expression in rodent offspring compared to exposure before birth. Nutr Metab Cardiovasc Dis 15:17CrossRefGoogle Scholar
  134. Vucetic Z, Kimmel J, Reyes TM (2011) Chronic high-fat diet drives postnatal epigenetic regulation of mu-opioid receptor in the brain. Neuropsychopharmacology 36:1199–1206PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wadley GD, Siebel AL, Cooney GJ, McConell GK, Wlodek ME, Owens JA (2008) Uteroplacental insufficiency and reducing litter size alters skeletal muscle mitochondrial biogenesis in a sex-specific manner in the adult rat. Am J Physiol Endocrinol Metab 294:E861–E869PubMedCrossRefPubMedCentralGoogle Scholar
  136. Walsh SW (2007) Obesity: a risk factor for preeclampsia. Trends Endocrinol Metab 18:365–370CrossRefGoogle Scholar
  137. Wang JX, Davies MJ, Norman RJ (2002) Obesity increases the risk of spontaneous abortion during infertility treatment. Obes Res 10:551–554PubMedCrossRefPubMedCentralGoogle Scholar
  138. Wang M, Wang ZP, Gao LJ, Gong R, Sun XH, Zhao ZT (2013) Maternal body mass index and the association between folic acid supplements and neural tube defects. Acta Paediatr 102:908–913PubMedCrossRefPubMedCentralGoogle Scholar
  139. Wardle J, Guthrie C, Sanderson S, Birch L, Plomin R (2001) Food and activity preferences in children of lean and obese parents, vol 25. Nature Publishing Group, Basingstoke, ROYAUME-UNIPubMedCrossRefPubMedCentralGoogle Scholar
  140. Weindling AM (2003) The confidential enquiry into maternal and child health (CEMACH). Arch Dis Child 88:1034–1037PubMedPubMedCentralCrossRefGoogle Scholar
  141. Weissmann-Brenner A, Simchen MJ, Zilberberg E, Kalter A, Weisz B, Achiron R, Dulitzky M (2012) Maternal and neonatal outcomes of large for gestational age pregnancies. Acta Obstet Gynecol Scand 91:844–849PubMedCrossRefPubMedCentralGoogle Scholar
  142. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH (1997) Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 337:869–873PubMedCrossRefPubMedCentralGoogle Scholar
  143. White CL, Purpera MN, Morrison CD (2009) Maternal obesity is necessary for programming effect of high-fat diet on offspring. Am J Physiol Regul Integr Comp Physiol 296:R1464–R1472PubMedPubMedCentralCrossRefGoogle Scholar
  144. Whitmore TJ, Trengove NJ, Graham DF, Hartmann PE (2012) Analysis of insulin in human breast milk in mothers with type 1 and type 2 diabetes mellitus. Int J Endocrinol 2012:296368PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wilkinson SA, van der Pligt P, Gibbons KS, McIntyre HD (2015) Trial for reducing weight retention in new mums: a randomised controlled trial evaluating a low intensity, postpartum weight management programme. J Hum Nutr Diet 28(Suppl 1):15–28PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM (2007) Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol 18:1688–1696PubMedCrossRefPubMedCentralGoogle Scholar
  147. Wlodek ME, Westcott K, Siebel AL, Owens JA, Moritz KM (2008) Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kidney Int 74:187–195PubMedCrossRefPubMedCentralGoogle Scholar
  148. World Health Organisation (2010) Guidelines on HIV and infant feeding 2010. Principles and recommendations for infant feeding in the context of HIV and a summary of evidence. WHO, GenevaGoogle Scholar
  149. World Health Organisation (2016) Global health observatory data, overweight and obesity. http://www.who.int/gho/ncd/risk_factors/overweight/en/. Accessed Sept 2018
  150. Wright T, Langley-Evans SC, Voigt JP (2011) The impact of maternal cafeteria diet on anxiety-related behaviour and exploration in the offspring. Physiol Behav 103:164–172PubMedCrossRefPubMedCentralGoogle Scholar
  151. Yngve A, Sjöström M (2001) Breastfeeding determinants and a suggested framework for action in Europe. Public Health Nutr 4:729–739PubMedCrossRefPubMedCentralGoogle Scholar
  152. Young GP, Hu Y, Le Leu RK, Nyskohus L (2005) Dietary fibre and colorectal cancer: a model for environment–gene interactions. Mol Nutr Food Res 49:571–584PubMedCrossRefPubMedCentralGoogle Scholar
  153. Zalewski BM, Patro B, Veldhorst M et al (2017) Nutrition of infants and young children (one to three years) and its effect on later health: a systematic review of current recommendations (Early Nutrition project). Crit Rev Food Sci Nutr 57:489–500PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of BiosciencesUniversity of NottinghamSutton Bonington, LoughboroughUK
  2. 2.Food and Nutrition Research Group, Department of Food and Wine Sciences, School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations